#### EML4501 - Group 5

John Adler, Carley Daniele, Sebastian Diaz, Manae Kokobun, Matthew Musial, Marc Navetta, Camille Rodriquez

# THE "GET UP AND GO" GAIT(OR) AIDE

Herbert Wertheim College of Engineering Department of Mechanical & Aerospace Engineering UNIVERSITY of FLORIDA

#### **Product Overview**

The "Get Up and Go" Gait(or) Aide is a lift and harness system that provides offset weight support for users undergoing neuromuscular rehabilitation on elliptical machines. The user is strapped into a harness that connects to an overhead cable that statically lifts using a motor and winch. Once suspended, the Frame translates the user over top the elliptical. When exercising, the Dynamic Weight Offset Mechanism adjusts and maintains the tension in the cable to be equal to the desired weight offset. Novel features include lifting patients from their wheelchair, and dynamic variable weight offset between 0-350 lbs.

## Harness

The harness is made up of nylon webbing with polyurethane foam padding at the torso and waist for the user's comfort It facilitates users in wheelchairs by first lifting from the torso, then the rest of the harness can easily be attached It attaches to the cable with a mount consisting of a rigid bar, evebolt, and clevis grab hooks

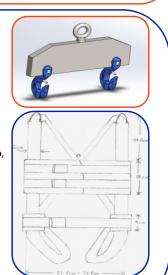
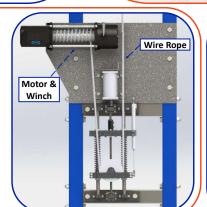




Figure 2. Harness Mount and Textile Sketch

## **Static Lift Mechanism**

- The electric winch uses a 12 V 3horsepower copper permanent magnet motor and has a **pulling capability of up to 3000 lbs**, the winch fairlead and winch accessories are made of steel
- 7x19 Galvanized Zinc Coated Carbon Steel Cable, Clear Nylon Coating Minimum Break Strength 2,800 lbs
- Polypropylene case guards the mechanisms and protects against pinch points



#### Figure 6. Winch, Motor, Wire Rope



## Safety Features

Safety rope has two components, steel carabiners and polyester lanyard, which has 400 lbs of capacity. By wrapping lanyard around an I-beam and attaching carabiner to harness, this system **can prevent user from falling if rope is broken** 

- Users can keep balance and body stable using the handle on the frame
- Emergency stops attached to frame have **ability to cut the power with a single push** by user or helper

#### **Product Costs**

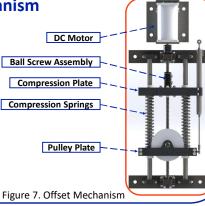
- OTS Parts: \$3168.30
- Raw Materials: \$1211.50
- Manf. & MFG Labor: \$105.30
- Energy Consumption: \$0.13
- Assembly Labor: \$107.10
- Total Cost: \$4592.33

#### Frame Design

- 2.2 m high and 1.4 m wide
- Each 2 by 3 inch 11-gauge steel tubing
- Swivel action brakes on each high strength polyurethane wheel



# Acknowledgements


We would like to thank Cummins and Northrup Grumman for their sponsorship, and Dr. Traum for his invaluable guidance in our pursuit and enjoyment of mechanical engineering design.

# Dynamic Weight Offset Mechanism

Cable length is held constant; the ball screw assembly and DC motor adjust the compression of the die springs, changing the cable tension to be equal **to any user-defined value between 0% and 100% their body weight** 

 Linear potentiometer tracks the change in spring compression as the user vertically translates on the elliptical and commands the ball screw assembly to continuously adjust and maintain the unloading cable tension

 DC Motor capable of 1800 RPM and 12 lb-in torque, supports up to 350 lbs of dynamic weight offset at exceptional fitness intensity of 180 strides/min





#### EML4501 - Group 5

John Adler, Carley Daniele, Sebastian Diaz, Manae Kokobun, Matthew Musial, Marc Navetta, Camille Rodriquez THE "GET UP AND GO" GAIT(OR) AIDE

Herbert Wertheim College of Engineering Department of Mechanical & Aerospace Engineering UNIVERSITY of FLORIDA

#### **Customer Needs Mapping**

| i needo mapping    |                                      |              |                |                        |
|--------------------|--------------------------------------|--------------|----------------|------------------------|
| Need 1             | Height and Width                     | $\mathbb{R}$ |                | Size of Frame          |
| Need 4             | → Load failure                       |              |                | Weight Capacity        |
| Need 5             | Frame F.S                            |              |                | Frame Mat'l            |
| Need 9             | Frame Clearance                      |              |                | Frame Height           |
| Need 13            | Wheels                               |              | [              | Wheel Locks            |
| Need 15            | Height and Width                     |              | Frame          | Mat'l Strength         |
| NCCU 15            | Weight Capacity                      |              | Frame          |                        |
| Need 18            | Sits on Floor                        |              |                | Frame Layout           |
| Need 24            | Material Cost                        |              |                | > \$4000               |
| Need 27            | Screen                               |              |                | Control Box            |
| Need 28            | 5-10 Years                           |              |                | F.S. >1.5              |
| Need 6             | Safety Net                           |              |                | Safety Strap           |
| Need 24            | Material Cost                        |              |                | Inexpensive OTS Parts  |
| Need 25            | Emergency Stop                       |              | Safety         | Stop Button            |
| Need 26            | Mech Failure                         |              | Mechanism      | Strap                  |
| Need 28            | 5-10 Years                           |              |                | Reasonable F.S.        |
|                    |                                      | J            |                |                        |
| Need 4             | Weight Capacity                      |              |                | Mat'l Strength         |
| Need 14            | Size Capacity                        |              | Harness        | Dimensions             |
| Need 24            | Material Cost                        |              | nainess        | Harness Material       |
| Need 28            | 5-10 Years                           |              |                | Harness F.S.           |
| Need 12            |                                      | 1            |                | Winch                  |
| Need 12            | → Lifting via Motor → PID Controller | 1            | r              | Control Box            |
|                    |                                      |              | Motor/Power    | Standard Material      |
| Need 23<br>Need 24 | Plugs into Wall                      |              | systems        |                        |
| Need 28            | Motor Cost                           | 1            |                | Inexpensive Motor      |
| Neeu 20            | 5-10 Years                           | ſ            |                | Lifetime               |
|                    | Power output                         | l.           |                |                        |
| Need 2             |                                      |              |                | Standard Motor         |
|                    | Motor                                |              |                |                        |
| Need 4             | Capacity                             |              |                | Motor Lifting Capacity |
| Need 7             | Motor Speed                          |              |                | Lifting Motor          |
| Need 8             | Motor Speed                          |              |                | Compression Spring     |
| Need 10            | Dynamic Control                      |              | [              | Compression Plate      |
| Need 11            | Dynamic Control                      |              | Primary Lift & | Compression Spring     |
| Need 14            | Wire Cable                           |              | Weight System  | Wire Cable Material    |
| Need 16            | Dynamic Control                      |              |                | Adjustable Controller  |
| Need 17            | PID Controller                       |              |                | Box                    |
| Need 19            | Dynamic Control                      |              |                | Ball Screw             |
| Need 20            | Dynamic Control                      |              |                | Ball Screw             |
| Need 21            | User                                 |              |                | Ball Screw             |
| Need 24            | Material Cost                        | r /          |                | > \$4000               |
| Need 28            | 5-10 Years                           | K            |                | F.S. > 1.5             |
|                    |                                      |              |                |                        |