

Group 8: Roberto Coltraro, David Damiani, Daniel Fischman, Kelly Fox, Lingwei Kong, Tyler Poon, Daniel Prestridge

Product Abstract & Functionality

The Gait-er Aid System is powdered by three Nema 34 motors that dynamically and continuously offset user weight using a closed loop feedback system and tension applied through the Kevlar rope. The design is a lightweight frame with leveling caster wheels for lifting the participant from seated to standing position and then moving them over to the elliptical for securing into the device. A COTS tablet is mounted with an Arduino Nano to interface with the feedback system to provide seamless participant to device interaction. For safety, the device contains accessible E-Stop buttons and a magnetic reed switch attached to the patient in the event of a fall.

Lift and Harness

- 2.43" max swing of system at 0.2 m/s²
- Pulley system situated within cantilever beam attached to main frame
- Load cell to measure extension and ensure proper tension
- COTS harness maximized for safety and comfort
- Design capable of interacting with other exercise machines due to compatibility

Structure

- Lightweight Aluminum 6061 Frame with Cantilever beam attachment
- Ø2.5" leveling caster wheels for movement and stability with attached bubble level
- C-Channel legs to maintain slim design for motor attachment and lead screws
- Footprint: 1 m x 2.5 m footprint & Weight: 76.3 kg

Cantilever Beam Deflection

• Max Stress: 53.4 MPa

 Max Deflection: 1.35 mm

Safety Factor: 4.49

Cost	
OTS	\$2546.55
Raw Material	\$1158.56
Manufacturing	\$30.69
Assembly	\$52.80
Energy Consumption	\$0.28
Total	\$3788.88

Weight Offset Mechanism

- Kevlar rope attaches participants to frame
- Cross beam with lead screws for weight offset adjustment connect mounted Nema 34 (Nema-C) for continuous weight offset
- Dual mounted side Nema 34 (Nema-S) to close loop feedback
- Power Supply Specs: 753 W at 15.7 A
- System Motor Specifications

Motor	Nema-C	Nema-S		
RPM	50	600		
Current [A]	6	4.24		
Torque [oz-in]	1161	1001		

Motor Mount Analysis

- Nominal Max loading plus sustained loading in multi-step analysis
- Max Stress: 116.9 MPaMax Deflection: 0.85 mm
- Safety Factor: 2.05

Need	Size (1, 13, 30)	Power (2)	Interferences (3,9, 29)	Height & Weight	Fall Prevention	Safe and Comfortable Lifting	Continuous Weight Offset	Safety (5, 6, 25, 26, 28)	Programmable/
				(4, 15, 18)	(10,11)	(7, 8, 12, 13, 14, 17,)	(16, 19,20, 21)		Intuitive (22, 23, 27)
Quantification	Volume: 2.4' x	120 VAC	25" Lifting Height	59.3" – 74.1"	5° Sagittal	<18" Swing	Controller: S.S Error <5%,PO	Number features & visual	1-minute start time
	3.1' x 2.74'	15 amps	>81.5" x 7" exercise	>350 lbs. weight	15° Transverse	Lift Speed: 0.2 ft/s ²	< 7.5%, 2% Settling Time	indicators	4 control features
	Moveable: 2.43		clearance, # cables in	limit		Subjective user comfort	0% - 100% Variable control	Safety Factor > 2, Fail-	
	x 3.05 x 2.7m		clearance zone			± 3" positional tolerance		Safes, Max load exceed,	
								6,000,000 cycles	
Features	1 m x 2.5 m x	753 W at 15.7 A,	30" Lifting Height, 3	59.3" - 80"	COTS Harness,	2.5" Swing, 0.2 ft/s ²	Nema 34, Stepper Drivers,	Frame mounted-stops,	30 second start time,
	2.7 m	COTS Power Supply –	cables, cables attach	500 lbs. Weight	Reed Switch,	± 2" positional, COTS harness,	Arduino Mega, Load Cell,	Magnetic reed switch,	all control features
		Product: Meanwell	behind participant	limit	Tipping Analysis	Kevlar ropes and hooks, Pulley	Kevlar rope tension, Closed-	Tablet emergency stop	visible on tablet,
					confirmation	system	Loop Feedback		simplistic user
									interface
System	Overall	Power & Distribution	Weight Offset/Lift	Lift and Harness	Lift and Harness	Lift and Harness	Weight Offset	Safety	User Interface