EML 4501-Group 17

Brian Behrens, Ezinne Chukwunenye, Logan Fitzgerald, Bryan Fu, Robyn Natherson, Tiffany Saballos, and Felipe Tamayo

Abstract: An innovative body weight support system was designed to aid a patient in recovering from impaired leg movement. This primarily ceiling-mounted system lifts the patient from a wheelchair and suspends them above an elliptical. The winch-like support system is guided along steel rails that mount to any ceiling's structural beams. Track rollers smoothly translate the patient along the rails. The Easy-Weight Elliptical Exercise (EEE) system is comprised of a single electrical motor coupled with a gear train that turns a shaft which spools a steel rope offsetting the patient's weight by a specified amount. The user-friendly remote interface makes therapy programming fast and easy. The EEE system includes a reliable backup failsafe system that is just slack enough to catch the patient mid-air in the case of any electrical failures. A lightweight aluminum suspension and an ergonomic nylon harness makes a previously burdensome therapy process less tiresome. The user will be mounted onto an elliptical trainer equipped with boots that use functional electrical stimulation to rehabilitate the mind-to-muscle connections that the patient is lacking.

Frame: The foundational concept of the EEE is a ceiling mounted rail system with rollers that translate the vertical lift system as shown in Fig. 1. Solenoid actuated spring locking pins fit into a series of holes along the rails to anchor the system in place.

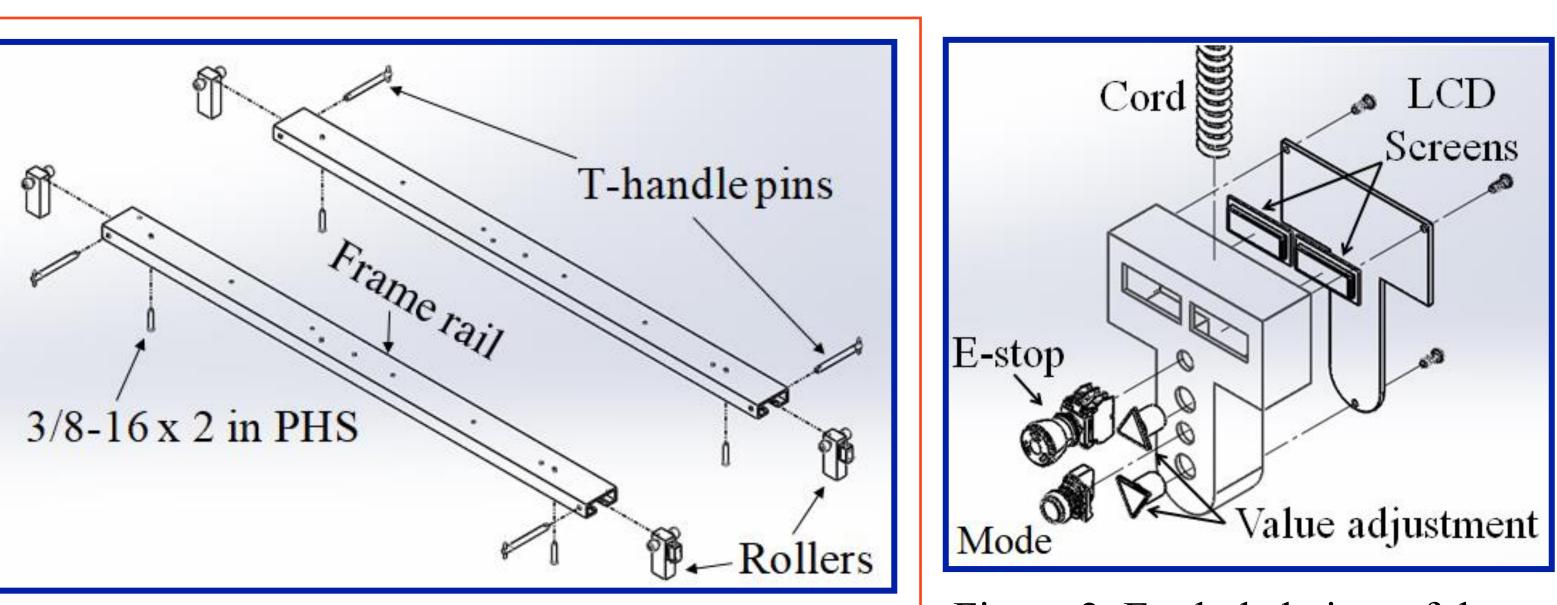


Figure 1. Exploded view of the Frame System

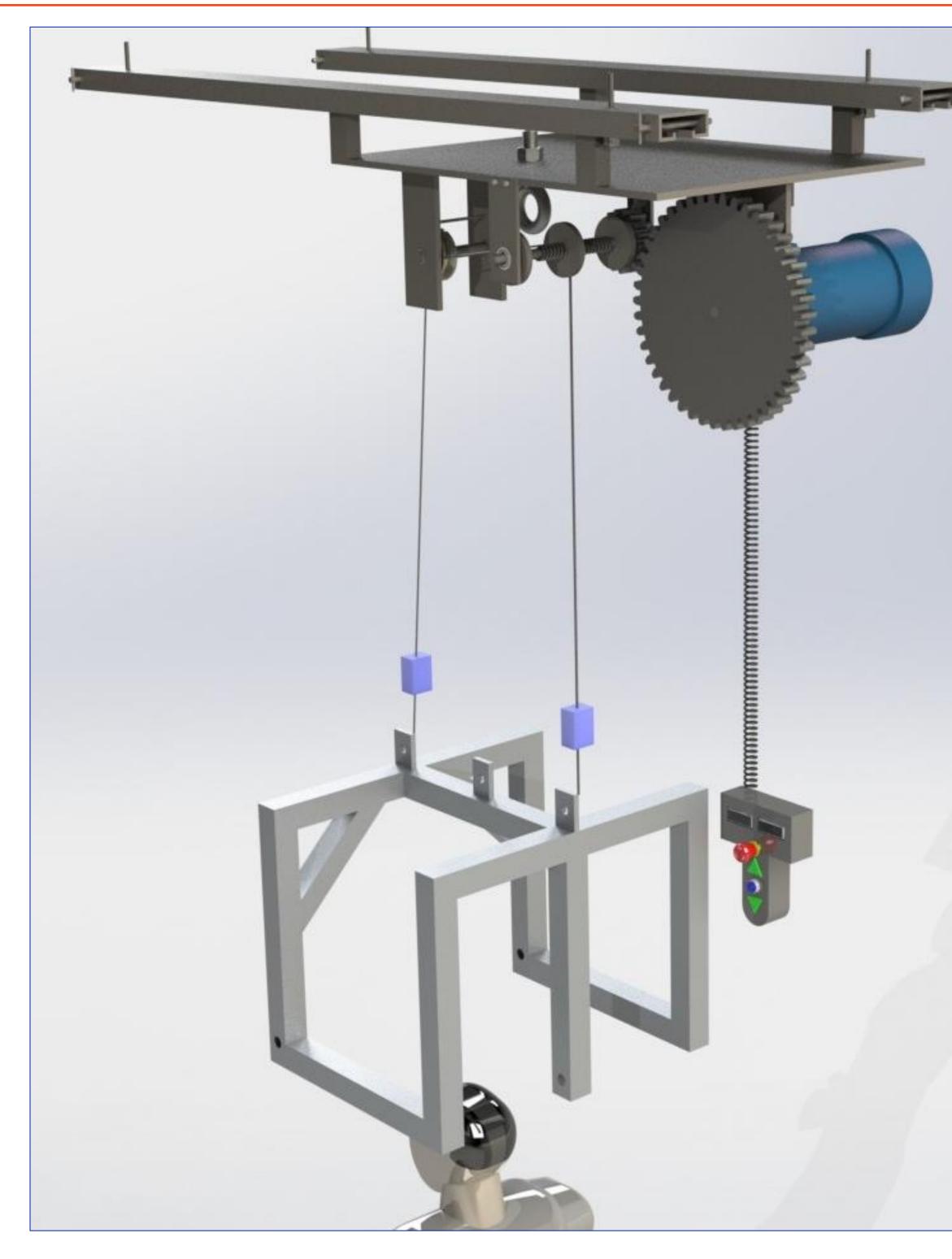


Figure 5. A full system view of the Easy-Weight Elliptical Exercise

Figure 2. Exploded view of the Interface remote

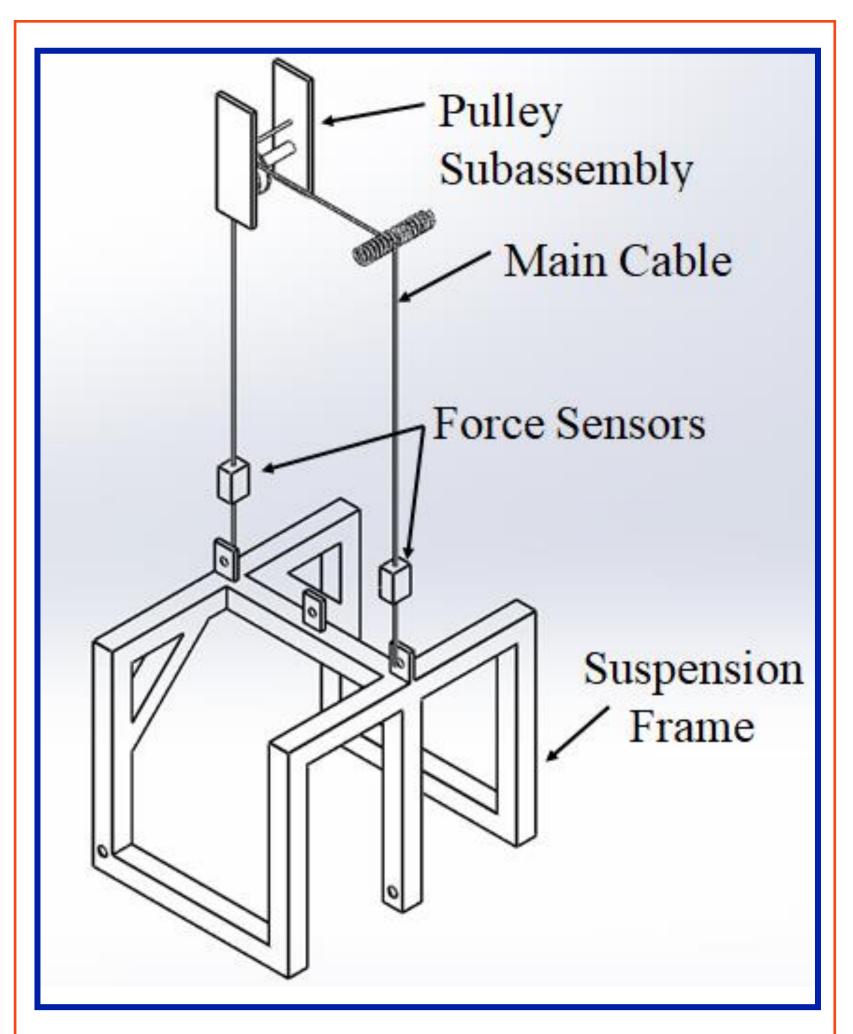


Figure 4. View of the Suspension System

Suspension System: Two cables from the offset system and an additional rope from the failsafe attach to a frame made of square tubing as shown in Fig. 4. The suspension frame is the structure which the three ropes that go to the harness clip into.

Cost (OTS Raw Man Ener

Asse

Total C

Fail-Safe: A secondary rope attaches to the suspension frame from an eyelet on the top plate which holds the motor up. The secondary rope is configured to be taut at the lowest point of the exercise cycle.

Interface: The user adjusts different system parameters through an intuitive remote. The remote translates along with the user, so it is always within arms reach. Fig. 2 shows an exploded view of the interface.

Harness: A modified OTS climbing harness is used to secure the user into the system. Ropes from the suspension frame attach to the harness in three locations.

Offset System: A variable speed motor coupled with a gear train makes it possible to offset a desired value of the users weight during assisted elliptical exercise. The offset system is capable of lifting up to 1,050 lbs and operating at a max linear lift speed of 10 in/s. A dual spool is used to supply two cables to attach to the suspension frame as shown in Fig. 3.

Easy-Weight Elliptical Exercise (EEE)

Overview	
S Parts:	\$3080.76
v Materials:	\$909.78
nufacturing:	\$88.85
ergy:	\$18.74
embly Labor:	\$141.89
Cost:	\$4240.02

	le I: Mappi	ig custo	mer n	leeds to design leatures
Need	Parameter	Quantification	Subsystem	Features
1	Clearance through door	< 36 in x 80 in	All subsystems	Ceiling mounted frame rails are compact, fit within 30 in x 18 in
1	Ceiling Height	<80 in	All subsystems	BWS total assembled height is 18"
2	Compatible with wall outlet	120 V	Offset System	System can be powered with 120 V source, cord plugs into standard wall outlet
3	No interference with elliptical operation	0 points below user's knees	Harness	Harness secures around waist and upper body, no attachments below knees
4	Load capacity	>350 lb	All subsystems	An electric motor coupled with a gear train combine to make the offset system. This system is capable of lifting 1052 lb.
5	Factor of Safety	2.5	All subsystems	Lifting motor FOS of 2.63; Frame FOS of 5 and lifting cables FOS of 10; Suspension arms FOS of 7
6	Fall distance	Not fall past the lowest position	Failsafe	Ascender allows the length of the rope to be adjusted. When the user is in the lowest point, the rope should be taut.
7	Lift and descent rate	2 in/s	Offset System	Variable speed motor combined with gear train
8	Prevention of patient swinging into elliptical	5°	Harness	Suspension and harness subsystems synergize to form a pendulm, reducing forward movement
9	Translate unencumbered in the vertical direction	3 in. of vertical displacement	Offset System	Harness and suspension allow for user to traslate freely in the vertical direction.
10	Prevents sagittal fall	<25° vertical, <15° in dorsal	Interface	Suspension and harness subsystems synergize to form a pendulm, reducing lateral movement
11	Prevents transverse fall	Constrains body within ±15°	Harness	Harness has attachments at the shoulders as well as locations such as the hips.
12	Lifts user from seated position	Bent knee (90° $\pm /-5^{\circ}$) to	Suspension	Suspension has three attachment points, two across the chest and one on the back
13	Horizonal translation distance	>36 in	Frame	User is translated up to 41 in by ceiling mounted rail system
14	Vertical lift distance	15 in.	Offset System	Cable is coiled around the spool to lift the user.
15	Harness torso circumference	39.2 - 58.0 in	Harness	Adjustable climbing harness style harness, fits almost all body types
16	Smoothly transition to offset weight	0.5 - 2 lbs/s	Offset System	Load cells feed data into control system so offset weight is transitioned smoothly
17	Distance to interface	36 in	Interface	Remote is attached to translating rail system by a cord such that it is always within reach of the user.
18	Mount to structural member	Exert less than 50 psf	Frame	Frame mounts distributes weight to ceiling over a large area with a max load of 25 psf; attaches to ceiling joists
19	Provides continous user defined offset weight	±51b Offset Error	Offset System, Interface	Interface allows user to select offset weight. Load cells have fast sampling rate so control system can adjust appropriately
20	Offset weight support feels continous, despite adjustments	<15° tilt from vertical	Offset System, Harness	Use of an electric motor, a speed controller and a gear train to maintain the offset speed
21	Provide offset over vertical and horizontal range	±20° abdominal, -10° - +45° Vertical		The offset subsystem provides the vertical range of motion. The track system provides the horizontal range of motion.
22	Is programmable	2 inputs	Interface	The remote takes the user's weight and height as inputs so the controller has initial data.
23	Interface colors	≥2	Interface	Mode button, value up/down buttons, and emergency stop button are all different colors
23	Actions to execute task	2	Interface	(1) Select the mode (2) Adjust the value
24	Raw material cost	\$4,000	All subsystems	Harness: \$90, Suspension: \$825, Frame: \$554, Fail-Safe: \$305, Offset: \$1977, Interface: \$177
25	User activated E-stop	Activate with 1 hand	Fail-safe,	Two e-stop buttons, one on the remote and one on elliptical dashboard. Both can be activated with a single hand.
26	Automatic force based	Activates at	Failsafe,	Controller coupled with load cells in suspension system detect when
27	safety shutoff Visual Indicator that shows	120% of 6 lumens	Suspension Interface	safety limits are hit Two LCD screens depict system parameters
28	function Operational lifetime	>1500E6 cycles	Offset	Motor and cable spool lasts for >1500e6 rotations
29	Body surface area covered	< 50%	system Harness	Harness covers 28% of the users body, enough to stablize the user but
30	System footprint	8 ft x 10 ft	Frame	also allow them to exercise freely on the elliptical The system has a footprint of 30in x 72in
			-	

Motor Mount Set Screws Large Gear De am Lock Nut **Retaining Ring** Spool 1/2-20 x 2 in SHS Small Gear **Ball Bearing** Spool Mount

Figure 3. Exploded view of the Offset System

Table 1: Manning customer needs to design features

Target linear lift speed: 10 in/s Target rotational lift speed: 4.255 rev/s Motor rotational speed: 1 rev/s **Gear ratio:**

FoS

Offset Speed and Torque Analyses

i_1	r_{2}	1	200	4 _	d_2	
ι_2	r_{1}	4.255	850	17	d_1	
Notor gear pitch diameter, d_1 : 17 in						
pool gear pitch diameter, d_2 : 4 in						

Factor of Safety:

5 =	Torque of Motor	_ <u>44.47 Nm</u> _	2.63
	Torque of Load		- 2.03