EML 4501 Spring 2020 - Group 19

Shnyley Belice, Michael Evanoff, Ryan Gonzalez, Samuel Sorensen, Uyen Vu, Nathan Wendling, Colton Woods

Abstract

This design consists of five different components: the frame, the hoist mechanism, the suspension system, the safety system, and a tension force sensor. What makes this design unique is that it is organized in a simple manner that makes assembly time quick and easy to manufacture. The base of the frame is made up of caster wheels and stoppers so the device may be easily moved, with a handle, and fixed into place. A box that contains the main functional components organized in a compact way so that it does not take up too much space is attached to the frame. The box is also to prevent any injuries from occurring by not having the running motor exposed. The design operates with a real time dynamic system attributed to the tension force sensor that communicates with the hoist mechanism and adjusts the offset weight accordingly.

Exploded View of Components 3

Fig. 2 The exploded view of the device showing the labeled subsystems. 1) The frame, 2) the force sensor attached to the lifting cable, 3) box containing the hoist and suspension subsystems, and 4) the safety system.

Continuous Load and Offset Weight Neuromuscular System

Fig. 3 Exploded view of the hoist and suspension system components which are inside the box from Fig. 2. Depicted here is a motor (1) attached to a speed reducer (2) which provides power to the spool (3). In addition to the main motor mount, there is also a side support to reduce motor instability due to vibrations.

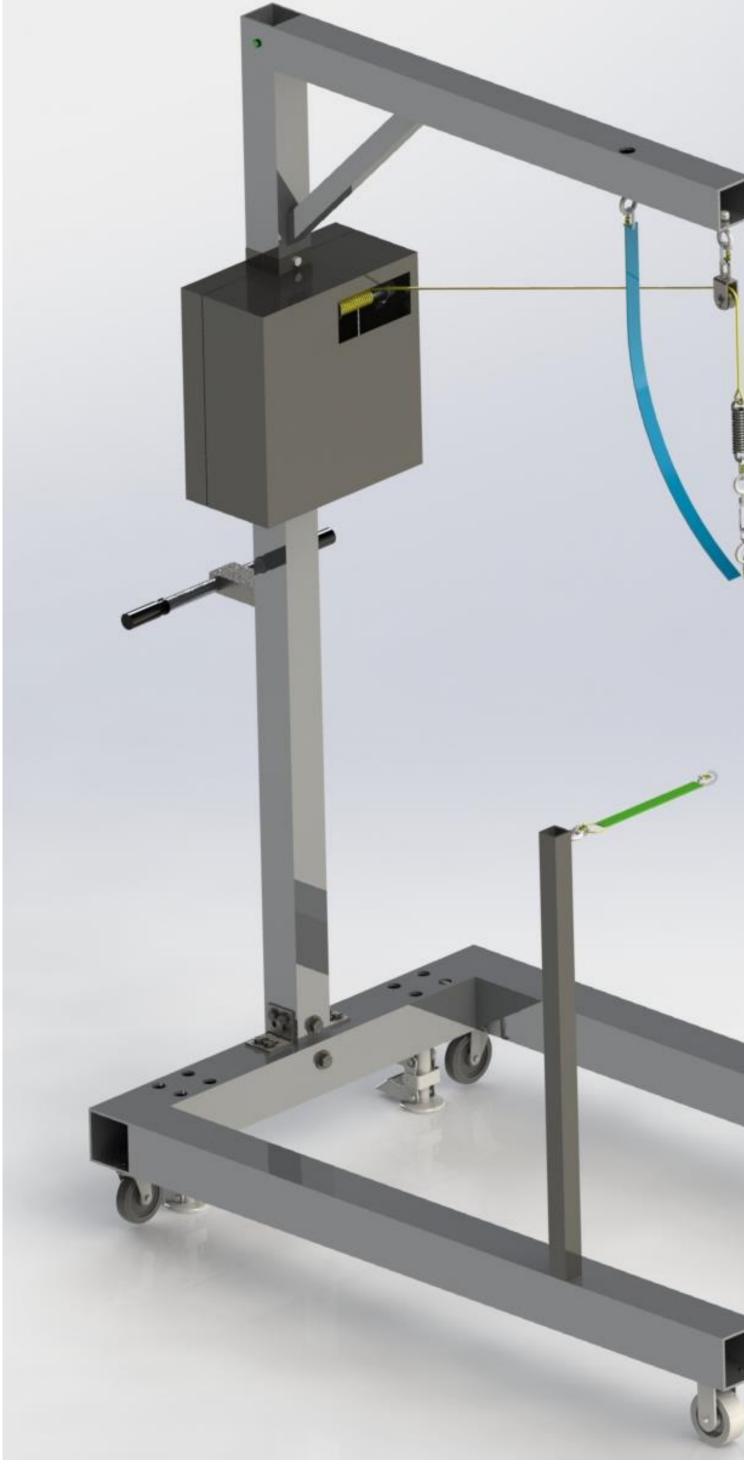
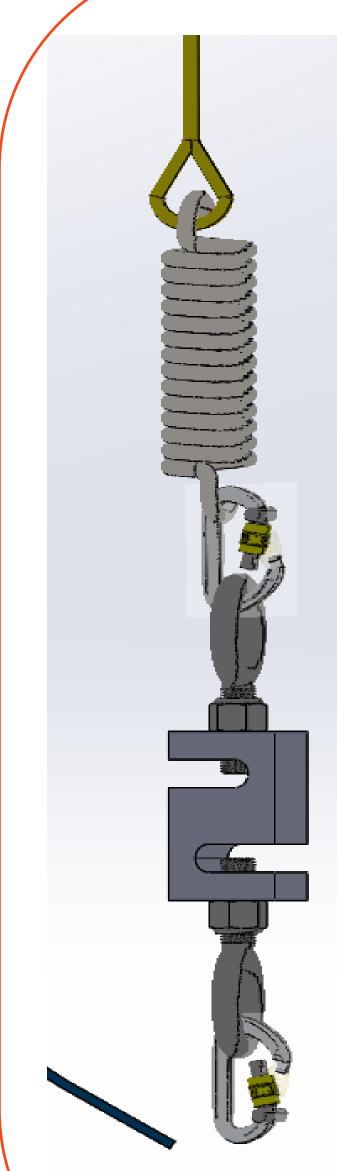



Fig. 1 Rendered image of the full device.

Force Sensor/Suspension Spring Key Features

Spring: Provides smooth, continuous vertical translations for the user as they exercise. This is accomplished as the spring absorbs energy from vertical oscillations. The spring has a stiffness of 501 lbs/in.

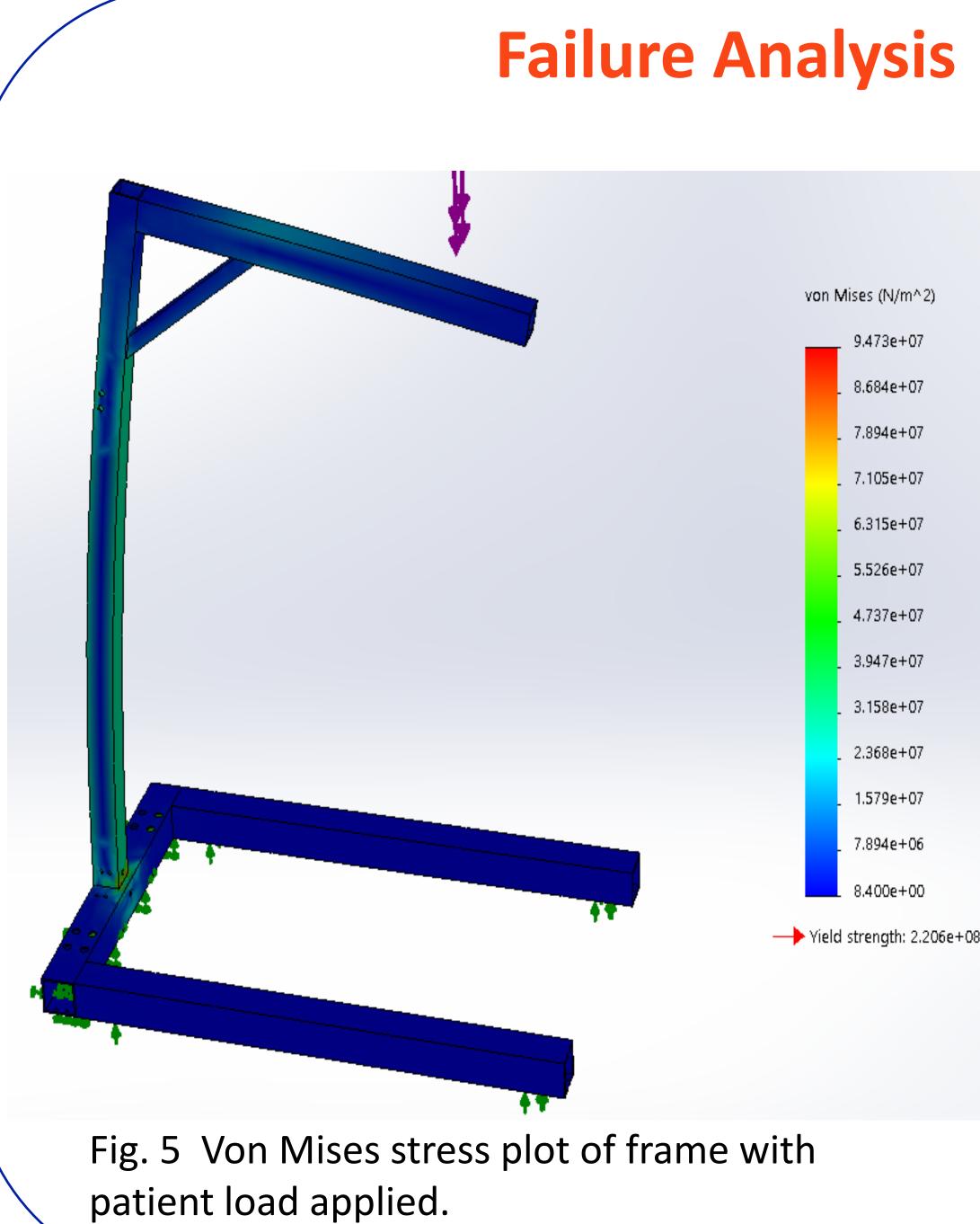

Sensor: Provides real time continuous data acquisition at 0.1 lb increments with an accuracy ±1.6 oz. The sensor has a max capacity of 500 lbs which is more than enough to support the max user weight of 350 lbs. This is a resistive type sensor.

Fig. 4 Image depicting the suspension spring and Force sensor attached to the lifting cable.

Narrative Summary

This lift and harness system will be used to raise up patients with neuromuscular disorders (ND's) from a seated position to allow for the use of a motorized FES elliptical machine. The product will allow for an offset weight input so that each patient will be able to have their own individualized therapy plan. The product has been broken down into five subassemblies of the frame, hoist, suspension, sensor, and safety. The frame is the structural support of the entire lift and harness system. It is used to get the user from point A to B and is used to mount the other components. The hoist mechanism is a motor and a speed reducer that winds the spool to lift and suspend the user and provides non-stop support. The suspension system controls the motor to maintain continuous offset weight. The safety system consists of tethers attached to the top of the frame and to the vertical bars on the sides to catch the user if the design were to fail and prevent the user from falling in any direction. Lastly, the force sensor attached to the cable that suspends the user will measure the tension associated with the user's weight. The data will be sent to the suspension system to adjust the offset weight.

- OTS Parts: \$3612.58
- Raw Materials: \$139.45
- Manufacturing and MFG Labor: \$146.61
- Energy Consumption: \$0.04
- Assembly Labor: \$160.00

Department of Mechanical & Aerospace Engineering UNIVERSITY of FLORIDA

Stress plot of the device frame loaded with 350 lbs (maximum user weight). The maximum stress found after the analysis was 14,895.38 psi. The frame is made of ASTM A500 grade B steel which has a yield strength 45,700 psi. The factor of safety is 3.07, therefore the frame can withstand all forces it will be subjected to.

Finite element analysis

Cost

Customer Needs Mapping				15.	Accommodate 5% female to 95% male	Frame highe and adjustal
	Customer Need	Quantitative Metric	Sub-System: Feature			
1.	System height, width, and floor print are cleared by ADA regulations	h < 90 in w < 32 in weight < 2000 lb/ft ²	assembled pieces and	16.	Slowly transition to preset offset weight	Slow / contr
			narrowness/ lightness of frame	17.	User can select offset weight between 0-100% of body weight	System can offset 0-350
2.	Powered by standard wall outlet	Powered by 120 VAC	Sensor and Motor: Energy			weight
		electricity and outlet with 15 A breaker capacity	consumption does not exceed 120 VAC for either	18.	Can be mounted from ceiling, wall, or floor	Able to mou wall, or floo
3	User can stand and exercise without	Boundary conditions of FES		19.	Provides continuous offset weight support	High reactio
5.	interference	elliptical system and 95% male must not interact	geometry of the suspension keeps the user	20.	Offset weight support feels continuous	Controller re suspension
		vertically	clear of elliptical			offset at top
4.	Supports full weight of the user	Supports 350 lb.	Hoist: High motor torque Frame: Steel frame			periodic mo
5.	Acceptable factor of safety	Factor of Safety > 1	Frame: Factor of Safety = 3.07	21.	Provide pre-set multi-directional weight offset	Provide pre- directional v
6.	Includes a fail-safe system	Fail safe that can support multi-directional fall and max weight + impulse of a fall	Frame: vertical guide rails Safety: 3 tethers with sufficient tautness and strength in diverse	22.	Programmable	Programma
7.	User can be transported at comfortable	Comparatively slow motor	geometries Hoist: Low Motor RPM	23.	Intuitive user interface	Intuitive and
/.	speeds	that still completes customer need 4		23.		interface
8.	Prevent the user from swinging and interfering with elliptical in horizontal direction	Boundary conditions of FES elliptical system and 95%	Safety: taut vertical	24.	Prototype cost for materials cannot exceed \$4000	Prototype co
		male must not interact horizontally	tether	25.	Emergency shut-off switch included	Emergency s included
9.	User translate unencumbered vertically	h _{max} of frame > height of 95% male user + h _{max} of	Frame: Tell vertical beam and shor hanging beam to			
		elliptical pedals	limit user/system interaction	26.	Shut-off if max force is exceeded or if there is an unprecedented change	Recognize w exceeded ar
10.	Prevent user from losing sagittal balance	Adaptable and strong vertical control	Safety: strong/taut vertical tether Frame: Floor locks			unpreceden system
11.	Prevent user from losing transverse balance	Adaptable and strong horizontal control	Safety: strong/taut horizontal tethers Frame: Floor locks	27.	Visual indicator to show when the system is on, is mode, and offset weight	Visual indica show array o
12.	Lift user from seat to fully suspended	Can translate a 350 lb	Hoist: Motor with a	28.	Operational lifetime is three times standard	Operational
		person from seat to fully suspended	sufficient torque Frame: Steel material that		elliptical trainer	years
			can handle 350 lb	29.	FES pads must be accessible	System mus
13.	Moves fully suspended user to elliptical	Can vertically translate a 350 lb user	Frame: Mobile multi- direction caster wheels			accessibility
14.	Holds the user suspended	Handle 350 lb user and keeps stable	Hoist: Motor with a sufficient torque Safety: Horizontal Tethers	30.	Overall footprint of the system cannot exceed 8'x10'	Overall foot system canr

Continuous Load and Offset Weight Neuromuscular System

UTE Department of Mechanical & Aerospace Engineering UNIVERSITY of FLORIDA

her than 95% male	Frame: tall frame, short
table harness	hanging bar, and adjustable harness
ntrolled motor	Hoist: motor with a low RPM
n be controlled to	Hoist: Motor with a high
50 lb of body	torque that can be
- • • •	controlled for each weight
ount on ceiling,	Frame: Floor-based
or	mounting and floor locks
ion speed of hoist	Hoist: Speed reducer offers
	diverse speed choices
reacts quickly and	Sensor: Force sensor on
n provides weight	vertical tether continuously
op and bottom of notion	monitors offset Suspension: Controlled by
ΙΟΠΟΠ	input from force sensor
e-set multi-	Suspension: geometry
I weight offset	offers universal weight
	offset
nable	Suspension: offset weight
	can be programmed
	Sensor: Force sensor can be
	programmed
nd simple user	Hoist and Suspension: Easy
•	access with accessible
	casing
cost < \$4000	All sub-systems: Cost =
	\$4058.00
y shut-off switch	Safety: Kill switch on
	vertical strut connected to
	hoist and elliptical to shut
	down motion
when max force is	Sensor: Force sensor on
and for	vertical tether connected to
ented change in	control box monitoring for
	max or unexpected force
	with a set limit in place to shut-off at
cator included to	Frame: Visual indicator on
y of options	vertical strut
al lifetime > 60	Frame: Steel frame with
	usable lifetime under
	periodic motion > 60 years
ust not interfere	Frame: Open and
ty to FES pads	uncluttered design to allow
,	for accessibility
otprint of the	, Frame: Narrow design that
nnot exceed 8'x10'	is 6.4'x4'