PUP

Printer

GROUP 7

The Team

Product overview/design philosophy

- 3D bioprinters are becoming commonplace around the world.
 - Many research and development laboratories have them
- Unfortunately, 3D bioprinters mounted to microscopes are little and expensive!
- The team's hedgehog concept:
 - cost effective and simple!

Design
Overview:
Print head

Highlights

- Modified OTS mounting solution
- Simple linear guide rails with polymer bushings
- Center Driving Pistons

Modified OTS Mounting

- To simplify manufacturing, an OTS condenser port adapter is modified to hold the dispencing structure
 - Weight reduced from 181.6g to 37.6g
- Features for functional surfaces will be controlled, reducing risk from supplier

Guide rails

- Acetal co-polymer bushing
 - Low coeficent of friction
 - Low wear
 - Good machinability
 - Initally considered PTFE
 - 1/8 "Stainless Supprt rails
 - Line fit to light press
 - C-Clips to constrain axial movement

Center Driving Pistons

- Driving Piston for XY located between linear rails
 - balance any induced moment
 - Reduces risk of "racking"

Design Overview:
Driving/Dispensing

Highlights

- Modular piston system
- Smoothie board mount
- Driving System Enclosure

Modular Piston Assembly

- Assembly is modular which allows for the quick replacement of syringe
- Actuators to drive piston
 - Low Cost
 - Good Controllability
 - Limited Assembly needed

Smoothieboard Mount

- Designed for 3D printing in ABS
- Custom designed to mount to DIN rail
- Threaded inserts to aid in assembly

Driving System Enclosure

- Sheet metal enclosure designed for ease of manufacturing
- Enclosure provides professional appearance

Sub-system Analyses

Dispensing:

- Dispensing force for desired flow rate determined by Bernoulli equation
 - Pressure at needle outlet and fluid velocity in syringe barrel were neglected

$$P_1 = \frac{1}{2}\rho V_2^2 + \rho \Delta z$$

- Variables:
 - ρ density of print fluid
 - Δz height difference between syringe barrel and dispensing tip
- Volumetric flow rate: $Q = V_2 A_2$
 - A_2 dispensing tip cross sectional area
- Pressure applied by actuator: $P_1 = FA_1$
- Solving for F:

$$F_{req} = \frac{\rho A_1 Q^2 + 2\rho A_1 A_2^2 \Delta z}{2A_2^2}$$

Motion:

Printable feature size d from (O'Bryan 2017):

$$d = \sqrt{\frac{4 \, Q}{\pi \, v_n}}$$

- The maximum actuator velocity is 25 mm/sec under no load
 - Maximum velocity under load assumed to be 15 mm/sec
- Print head speed can be determined: $v_1A_1 = v_2A_2$
 - A₁ syringe piston area
 - A_2 motion piston area

$$v_2 = \frac{A_1}{A_2} v_1$$

$$v_{2,max} = \frac{0.161 \text{ mm}^2}{0.172 \text{ mm}^2} \cdot 15 \frac{mm}{s} = 14.5 \frac{mm}{s}$$

• Projected feature size of d=0.3~mm when $Q=1~\mu L/s$.

Sub-system Analyses Con't

Control Box:

- Actuator and fan thermal efficiencies of 0.75
- Power supply surface area used as heat dissipation area, conservative approximation
- Volumetric flow:
 - No flow rate loss due to large PUP cutout on front face
- Q total heat being dissipated
 - Four actuators, two case fans, and Smoothieboard control
- Dimensionless numbers Reynold's, Prandtl, Nusselt
- Results:
 - 100°F
 - 38°C
 - 16°C above ambient temperature

```
ht_for_control_box.m × +
       clc; clear;
2
       %Define Variables:
       gactuator = 3.45*(1-0.75); %Watts
       qcontrol = 2.5; %Watts
       qfan = 1.2*(1-0.75); %Watts
       1 = 0.1; %meters
       w = 0.050: %meters
       h = 0.121; %meters
       vol = 0.068; %meters^3/sec
       tinf = 22.22+273; %Kelvin
       k = 0.0262; %Watts/(meters^2*K)
       nuair = 1.48*10^-5; %meter^2/sec
       rho = 1.225; %kg/meters^3
15 -
       hbox = 0.154;
       wbox = 0.277; %meters
17
18
19
       %Calcs:
       q = (4*qactuator)+qcontrol+(2*qfan); %Watts
       surfarea = (2*1*h)+(1*w); %meters^2
22 -
       boxarea = hbox*wbox; %meters^2
       vel = vol/boxarea; %meter/sec
       Re = ((vel*1)/(nuair)); %unitless
       alpha = ((k)/(rho*1000)); %meter^2/sec
       Pr = nuair/alpha; %unitless
       Nu = 0.037*(Re)^(4/5)*(Pr)^(1/3); %unitless
       h = ((Nu*k)/(1)); %Watt/meter^2*Kelvin
       t calc celcius = tinf+((q)/(surfarea*h))-273 %Celsius
       t calc fahrenheight = (9/5)*t calc celcius+32 %Fahrenheight
Command Window
  t calc celcius =
     37.7746
  t calc fahrenheight =
     99.9943
```

Cost and Parts Sourcing

OTS Parts	Raw Material	Manufactuirng Cost	Assembly Cost
\$1,909.33	\$284.44	\$1,006.23	\$320
		Total:	\$3,520

- OTS parts make up the majority of printer components
- Raw material consisting of plate, rod, and rectangular stock were sourced for every custom part
- Manufactuirng cost was determined using a feature-based quoting system that considers tolerances and required operations
- Assembly labor was quoted at \$80/hour and requires two people for two hours

Why PUP?

BEST BANG FOR YOUR BUCK

MINIMAL ASSEMBLY TOOLS

DESIGNED FOR FAST MANUFACTURING

MANY REPEATED PARTS

HIGH % OTS

Thank you!

Thank you, Northrop-Grumman and Cummins, for your continued support of the Capstone program and for helping make our program one of the best in the country!