

Swamp Hopper Light Attack Aircraft

EAS4710 - Group 2 – Spring 2021

Nathan Reineke, Alexa Gallo, Chris Mann, Luis Mendoza, Tracy Reeves, Chris Rice, Michael Vasou

Overview

"The Swamp Hopper is an affordable light attack aircraft capable of austere field landing and can be strategically placed on the front lines to operate in roles previously only occupied by attack helicopters"

- •Capabilities & Features:
 - Payload selection of up to 3,000 lbs.
 - •Two integrated guns
 - •2 crew with zero-zero ejection seats
 - •Service ceiling > 30,000 ft
 - •Affordable

Case Study of Similar Aircraft & the Weight at Takeoff

Mission Outline

Design Mission

1.	Warm Up / Taxi	7. Climb to ≥ 10000 ft; with range credit
2.	Take off Austere field, 50 ft obstacle, ≤ 4,000ft	8. Cruise 100 n mi
3.	Climb to ≥ 10,000 ft; with range credit	9. Descent
4.	Cruise 100 n mi	10. Landing to austere field over 50ftobstacle in \leq 4,000 ft
5.	Descent to 3,000 ft; no range credit; completed within 20 minutes of the initial climb	11. Taxi/ Shutdown
6.	Loiter for 4 hours on station	12. Reserves sufficient for climb to 3,000 ft and loiter for 45 minutes

Ferry Mission

1.	Warm Up/ Taxi	5. Descent
2.	Take off Take off Austere field, 50 ft obstacle, ≤ 4,000ft	 Landing at austere field over 50ft obstacle in ≤ 4,000 ft
3.	Climb To cruise altitude; with range credit	7. Taxi/ Shutdown
4.	Cruise at best range speed / altitude (≥ 18,000 ft), 900 Nmi	8. Reserves Sufficient for climb to 3,000 ft and loiter for 45 minutes

Aircraft Characteristic Comparison

$$egin{aligned} W_o &= W_{payload} + W_{crew} + igg(rac{W_F}{W_o}igg) W_o + igg(rac{W_E}{W_o}igg) W_o \ &rac{w_F}{w_o} = 1.06 igg(1 - igg(rac{w_i}{w_{i-1}}igg)_{TOTAL}igg) \end{aligned}$$

Super Tucano

- Max Weight: 11,000 lbs.
- Max Payload: 3,300 lbs.
- Engine Power: 1,600 HP
- Maximum Fuel: 1,000 lbs.

Piper Enforcer

- Max Weight: 13,999 lbs.
- Max Payload: 5,680 lbs.
- Engine Power: 2,455 HP
- Maximum Fuel: 1,900 lbs.

AT6 Wolverine

- Max Weight: 10,000 lbs.
- Max Payload: 4,110 lbs.
- Engine Power: 1,600 HP
- Maximum Fuel: 2,908 lbs.

Swamp Hopper

- Max Weight: 10,615 lbs.
- Max Payload: 3,100 lbs.
- Engine Power: 1,600 HP
- Maximum Fuel: 3,190 lbs.

Airfoil Selection and Wing Geometry Design

Airfoil Selection

- Aerodynamic coefficients were compared for different airfoils
- NACA 63412 was chosen due to:
 - Higher lift at stall
 - Best lift to drag ratio
 - Smallest moment coefficient

Wing Geometry Design

- Sweep
 - Ensures subsonic airflow during dive
 - Increases static stability
- Taper ratio
 - Creates elliptical lift distribution
 - Minimizes drag due to lift
- Low wing
 - Increases maneuverability
 - Landing gear storage
 - Clear overhead view
- Dihedral
 - Increases lateral static stability
- Cut-off wing tip
 - Increases lift and decreased drag.
- Incidence angle
 - Maximizes take-off lift
 - Minimizes cruise angle of attack.
- Twist
 - Prevents tip stall
 - Revises an elliptical lift distribution

Wing with NACA 64312 airfoil

Category	Symbol	Value
Span	В	38.0 ft
Total Wing Area	S	211 ft ²
Aspect Ratio	AR	6.61
Sweep	Λ	5°
Taper Ratio	λ	0.5
Wing Position	N/A	Low
Dihedral	Г	4 °
Wing Tip	N/A	Cut-off
Incident Angle	α_{i}	2 °
Twist	β	-3°

Propulsion

Propulsion

Why a Turboprop Engine?

- Higher efficiency than jet exhaust in denser air of low altitudes.
- More cost effective for short distances.
- Able to take off and land on shorter and non-concrete runways.
- Lower operation and maintenance costs.

Chosen Engine: Pratt and Whitney Canada PT6A-68D But why?

- Enough power for design and ferry mission.
- More versatility based on extra power.

PT6A-68D

Propeller Design

Design Decisions

- NACA 4412 propeller airfoil.
- 4 blades.
- Puller configuration at nose of the aircraft.

Variable	Name	Value
Р	Power	1,600 hp
n	Rotation Speed	33.33 rev/s
D	Diameter	7.167 ft
$V_{tip,static}$	Static Tip Velocity	750.54 ft/s
$V_{tip,helical}$	Helical Tip Velocity	861.60 ft/s
J	Advance Ratio	1.771
C _p	Coefficient of Power	0.7412
C _t	Coefficient of Thrust	0.3347
N _p	Propeller Efficiency	0.80

Features

Propeller and Engine Cowl

Fuel System

Design Requirements

• 1,700 liters of fuel needed for design mission with an extra 6% for reserved and trapped fuel.

Solution? No worries, we are engineers

- Bladder tanks in the wings with 465 liters of capacity.
- Rigid tank in the fuselage with 1,235 liters of capacity.

Bladder tank for light aircraft

Landing Gear

Landing Gear Selection

Bottom view of swamp hopper with tricycle configuration

Landing Gear deployed on the left and stored on the right with the oleo struts highlighted in red

Main Tires

Static and Dynamic Loading Estimation

Load	Auxiliary Tire	Main Tires
Max Static Load [lbs.]	1,703.7	5,307.5
Min Static Load [lbs.]	908.6	-
Dynamic Braking Load [lbs.]	1,723.3	_

Total Kinetic Energy Calculated: 5,067,700 N•m/s

Tire Selection

Auxiliary Tire \longrightarrow Type VII Aircraft Rib 18 x 4.4 in.

Initial Calculated Tire Characteristics

Tire Distribution	Auxiliary Tire	Main Tires
Number of Tires	1	2
Weight Distribution	10%	90%
Diameter Distribution	70%	100%
W _w [lbs.]	1,062	4,780
Tire Diameter [in]	18.3	26.1
Tire Width [in]	5.21	7.44

Model of the Tires

Main Tires ---- Type VII Flight Leader DT 26 x 6.6 in.

Characteristics of Selected Tires

Parameter	Auxiliary Tire	Main Tires
Tread Design	Aircraft Rib	Flight Leader DT
Part Number	461B-2741-TL	226F02-6
Size [in.]	18 x 4.4	26 x 6.6
Rolling Radius [in]	7.9	11.2
Rated Load [lbs.]	2,100	6,900
Applied Load [lbs.]	1,723	5,307
Rated Pressure [psi]	100	155
Applied Pressure [psi]	76.5	97.9

Fuselage, Crew Station Design, and Survivability Consideration

Crew Station and Design

- Fuselage:
 - Optimized fineness ratio for subsonic aircraft of 8.
 - Corresponds to a tip to tail distance of 30.75 ft.
 - Rounded contours to minimize radar footprint.
 - Turboprop allows for reduced IR signature.
 - Has both ECM and chaff countermeasures in case of detection.

- Crew station
 - Equipped with Two Zero-Zero Ejection seats for both pilots
 - Canopy and cockpit geometry is optimized for 95th percentile pilot
 - Allows for optimal visibility
 - Firewalls installed around fuel tanks and crew compartment

Weapons Carriage

Deployable Bombs and Missiles:

• Mark 82 Unguided bombs

•GBU 12 Pathway II Guided Bombs

•AGM 25 Guided Missile

• Mounted Gun: The FN M3P .50 caliber machine gun.

- Mounted on each wing as to not cause a moment due to recoil when firing.
- Gun placement behind engine eliminates recoil smoke interfering with combustion

- Bombs and missiles are stored under each wing, and the guided munitions use a rail launch mechanism.
- A total of 6 deployable ordinances are used to fulfil the 3,000lb armament package requirement outlined by the RFP.
- External mounting allows for modular armament swapping

Structure

V-n Diagram

- Variation in load factor as a function of EAS (Equivalent Airspeed)
- Load factor indicates maneuvering of aircraft of as a multiple of standard acceleration due to gravity
- EAS proportionality between TAS (True Airspeed) and square root of density ratio

Fuselage & Wing Structure Type

- Fuselage Types (Truss, Monocoque, Semi-Monocoque)
 - Selected Fuselage Type = Semi-Monocoque
 - Uses stringers which takes some of the bending stress away from the fuselage
 - Creates a barrier for further crack propagation
 - Many structural members --> Increases strength and rigidity

- Wing Structure Types (Mono-Spar, Multi-Spar, Box Beam)
 - Selected Wing Structure Type = Multi-Spar
 - Similar aircraft (Embraer Super Tucano)
 - Landing gear & mounted gun location

Material Selection

- Material Selected for Swamp Hopper
 - Aluminum 2024-T42
- Material Properties
 - Density = 0.100 lb./in³
 - Ult. Tensile Strength = 57.3 ksi.
 - Yield Strength = 37.7 ksi.

Structural Analysis

- Structural Analysis Results (ANSYS Software)
- Load was applied with a safety factor of 1.5
- Von Mises from ANSYS = 30.8 ksi
- Von Mises from principal stresses = 25.2 ksi
 - Both less than yield strength of 37.7 ksi
 - Number of cycles is 10 million

Tail Design, Systems, Weight, and CG Estimation

Conventional Tail Design

Properties	Horizontal Tail	Vertical Tail
Tail Volume Coefficient	0.70	0.06
Tail Arm, L	19.5 ft	19.5 ft
AR	4.0	1.0
λ	0.4	0.4
Sweep Angle	10 °	10 °
Airfoil	NACA 0009	NACA 0009
Tail Area	42.5 ft ²	24.7 ft ²

Deep Stall and Spin Recovery Considerations:

- Height of the aft tail aligned with the wing/fuselage AC
- >1/3 of the rudder is out of the horizontal tail wake region

Tail Control Surfaces

Rudder

- 30% of the vertical tail chord
- Same taper ratio as vertical tail
- 50% of the vertical tail span

Elevator

- 30% of the horizontal tail chord
- Same taper ratio as horizontal tail
- 50% of the horizontal tail span

Flight Control System

Fore-plane

Actuator

Actuator

Control Electronics

Leading-edge Flaps

Subsystems

Hydraulic Systems	5
-------------------	---

 AeroShell 31 synthetic hydrocarbon-based fluid

Electrical

- Turboprop generator
- Nickel-cadmium (NiCad) battery
- Wiring system
 - > 10 gauge: aluminum
 - < 10 gauge: copper

n A	12	27
		90

- Pressurization
- Anti-icing
- Engine starting
- Environmental control

Auxiliary/ Emergency Power

• Jet-fuel auxiliary power unit (APU)

Avionics

- Electronic Countermeasure (ECM)
- Infrared Jammer
- Infrared search and track (IRST) system
- IR Jammer
- Communications and navigations system

Subsystem Locations

Weight and Moment Estimations

Component	Weight (lbs.)	Moment (ft-lb)
Payload	2,994	35,299
Crew	400	4,800
Engine	578	2,088
Usable Fuel	3,161	32,113
Trapped Fuel	32	324
Two Wings	1,971	20,025
Tail	130	3,912
Main Landing Gear	514	6,274
Nose Landing Gear	91	495
Fuselage	960	13,152

Total Weight: 10,830 lbs.

CG (Center of Gravity) Estimation

Stability and Control

Longitudinal Static Stability

- Largest stabilizing contribution
- Engine

Name	Value
$C_{m_{lpha}}$	-0.648
$C_{m_{cg}}$	-0.044
Neutral Point	2.05
Static Margin	0.119

Lateral-Directional Static Stability

Name	Value
Roll Moment Coeff.	-0.138
Yaw Moment Coeff.	0.138

Roll Moment Major Contributors

- Wing Sweep
- Wing Placement
- Dihedral

Yaw Moment Major Contributors

- Vertical Tail
- Wing Sweep
- Dihedral

Performance Analysis

Range & Endurance Analysis

Range Analysis Values

- Cruise 1: 1,307 miles
- Cruise 2: 1,307 miles
- Loiter: 273 miles
- Total Range: 2,887 miles

Variable	Cruise 1	Cruise 2	Loiter
W _i	10,830 [lbs.]	9,300 [lbs.]	9,300 [lbs.]
W _f	9,300[lbs.]	7,990 [lbs.]	8,900 [lbs.]

Endurance Analysis Values

- Fuel Used: 1,095 lbs.
- Endurance: 6.05 hours

Variable	Description	Value [Units]
Wi	Initial Weight	7,800 [lbs.]
Wf	Final Weight	6,710 [lbs.]
E	Endurance	6.05 [hr.]

Take-off Performance

Variable	Description	Value
V_{stall}	Stall velocity	151 ft/s
Vg	Ground roll velocity	166 ft/s
V_{tr}	Transition to climb velocity	1,734 ft/s
V_{cl}	Climb velocity	181 ft/s
а	Takeoff acceleration	2.91 ft/s ²
γ	Climbing angle	4.83°
h _{tr}	Transition to climb altitude	16.6 ft
Sg	Horizontal ground roll distance	1,967 ft
S _{tr}	Horizontal transition to climb distance	395 ft
S _c	Horizontal climb distance	395 ft
S _{tot}	Total horizontal take-off distance	2,757 ft

Design Requirement: $S_{tot} \le 4,000$ ft

Landing Performance

Variable	Description	Value
μ	Rolling resistance with brakes on	0.2
$\gamma_{ m approach}$	Approach angle	4.77°
$V_{approach}$	Approach velocity	190 ft/s
h _F	Flare height	16.2 ft
V _{TD}	Touchdown velocity	166 ft/s
S _a	Approach distance	405 ft
S _F	Flare distance	390 ft
Sg	Horizontal landing ground roll distance	2,355 ft
S _{FR}	Horizontal free roll distance	332 ft
S _B	Horizontal braking distance	2,022 ft
S _{tot}	Total horizontal landing distance	3,150 ft

Design Requirement: $S_{tot} \le 4,000$ ft

Cost Estimation

Research, Development, Testing and Evaluation (RDT&E) Cost Estimation

RDT&E Cost per Unit

Description	Cost	
Engineering	\$4,260,00	
Tooling	\$2,310,000	
Manufacturing	\$3,960,000	
Quality Control	\$580,000	
Total RDT&E Cost	\$11,100,000	

Fly Away Cost Estimations

Fly Away Cost per Unit

Description	Cost	
Development Support	\$1,170,000	
Flight Test	\$899,000	
Manufacturing Materials	\$1,060,000	
Engine Production	\$4,900	
Total Flyaway Cost	\$ 3,120,000	

Research, Development, Testing and Evaluation and Fly Away Cost Estimations

RDT&E and Flyaway Costs at Different Production Quantities

Empty Weight vs Unit Cost

Quantity of Aircraft [5 years]	Total RDT&E Cost [\$]	RDT&E Cost Per Unit [\$]	Total Flyaway Cost [\$]	Flyaway Cost Per Unit [\$]	100 • Historical Data 90 • DAPCA IV Model 80 • Historical Estimate
50	556,000,000	11,100,000	171,00,000	3,420,000	inter (Historical Data) inter (Historical Data)
500	1,510,000,000	3,000,000	562,000,000	1,120,000	D 10 40 0 30 0 11 0 0 11 0
1000	2,150,000,000	2,150,000	932,000,000	932,000	
2000	3,110,000,000	1,558,000	160,000,000	803,000	0 5000 10000 15000 20000 25000 30000 Empty Weight (lb)
Values were calculat	Jalues were calculated by using a Development and Procurement Costs of				

Values were calculated by using a Development and Procurement Costs of Aircraft (DAPCA) model

Operational Cost for 1200 Flight Hours

Operations and Maintenance Cost per Year

Total Cost Per Year for 1,200 Flight Hours

Variable	Cost per year	Variable	Cost per Year	
Fuel Maintenance	\$39,000	Operations and	\$2 430 000	
Crew Salaries	\$745,000	Maintenance	JZ,430,000	
Maintenance	\$1,290,000	Tires	\$6,000	
Total Operations and \$2,434,000 Maintenance Cost		Brake System	\$10,000	
	Oil	\$1,500		
		Insurance	\$24,000	
 Maintenance Hours: 3 man-maintenance hours/flight hour 		Total Cost for 1,200 Flight Hours	\$2,470,000	

• Cost per Maintenance Hour: \$358/flight-hour

Thanks For Your Attention

Any Questions?

