

EAS4710 Group 3 Rendy Khairan, Matthew Lutton, Matthew Maddalon, Garrett Morgan, Ryan Mattson, Srajat Rastogi, Tiffany Ung

Competition Requirements

- <u>Austere Field</u>: Takeoff and landing over a 50 ft obstacle in less than 4000 ft
 - California Bearing Ratio of 5 semi-prepared runway
 - Altitude up to 6000 ft
- <u>Payload</u>: 3000 lbs of armaments
 - 60% of payload for ferry mission
- <u>Crew</u>: Two-person seating, each with zero-zero ejection seats
- <u>Service Ceiling</u>: greater than 30000 ft
- <u>Service Life</u>: 15000 hours over 25 years
- <u>Weapons</u>: Integrated gun and variety of other weapons

Design Mission

1	Warm Up / Taxi	5 minutes
2	Take Off	Austere field, 50 ft obstacle, ≤ 4,000 ft
3	Climb	To cruise altitude, \geq 10,000 ft; with range credit
4	Cruise	100 n mi
5	Descent	To 3,000 ft; no range credit; completed within 20 minutes of the initial climb
6	Loiter	On station, four hours, no stores drops
7	Climb	To cruise altitude, \geq 10,000 ft; with range credit
8	Cruise	100 n mi
9	Descent / Landing	To austere field over 50 ft obstacle in \leq 4000 ft
10	Taxi / Shutdown	5 minutes
11	Reserves	Sufficient for climb to 3,000 ft and loiter for 45 minutes

Ferry Mission

1	Warm Up / Taxi	5 minutes
2	Take Off	Austere field, 50 ft obstacle, ≤ 4,000 ft
3	Climb	To cruise altitude; with range credit
4	Cruise	At best range speed / altitude (≥ 18,000 ft), 900 n mi
5	Descent / Landing	To austere field over 50 ft obstacle in ≤ 4000 ft
6	Taxi / Shutdown	5 minutes
7	Reserves	Sufficient for climb to 3,000 ft and loiter for 45 minutes

Design Takeoff Weight Estimation

Propeller Aircraft vs. Jet Aircraft

<u>Driving Equation</u>: $W_0 = W_{payload} + W_{crew} + W_{fuel} + W_{empty}$

Fuel Weight Fraction

- Estimated the fraction of the weight at the end of the mission over the weight before the mission began
 - Warmup/takeoff, climb, descent, and landing weight fractions determined from historical data
 - Cruise and loiter weight fractions determined from Breguet range and endurance equations

Empty Weight Estimation

Obtained from trends of historical data

$$\frac{W_e}{W_0} = AW_0^0$$

	Propeller aircraft	Jet aircraft
Design mission	39601 lbs	25333 lbs
Ferry mission	13647 lbs	13164 lbs

 $\rightarrow W_{0} = \frac{W_{payload} + W_{crew}}{1 - \frac{W_{fuel}}{W_{0}} - \frac{W_{empty}}{W_{0}}}$

Thrust to Weight Estimation

Critical Thrust Requirement: 11063 lbs

	Thrust to Weight Ratio
Takeoff	<mark>0.4367</mark>
Climb	0.1685
Cruise	0.1516

Wing Loading Estimation

Stall Condition:

$$\frac{W}{S} = \frac{1}{2} \rho V_{stall}^2 C_{L_{max}} \longrightarrow V_{stall} = 150 \text{ ft/s, } C_{L_{max}} =$$

Takeoff Condition:

$$\frac{W}{S} = (TOP) \sigma C_{L_{TO}} \left(\frac{T}{W}\right) \longrightarrow TOP = 100, C_{L_{TO}} = 2.07$$

Landing Condition:

$$\frac{W}{S} = \frac{\left(S_{landing} - S_a\right)\sigma C_{L_{max}}}{80} -$$

$$S_{landing} = 4000 \text{ ft}, S_a = 1000 \text{ ft}$$

Critical Wing Area Requirement: 300 sq. ft

	Wing Loading	
Stall	<mark>49.4 psf</mark>	
Takeoff	66.7 psf	
Landing	90.6 psf	

Propulsion

- Twin Honeywell F124 Low-Bypass Turbofan Engines
- Partially buried engines with armpit located, pitot inlets
- Fixed converging nozzles
- 110 ft³ of JP-8 jet fuel held in selfsealing, bladder type fuel tanks
 - Located in wing and fuselage
 - Internal subdivisions in tanks to prevent sloshing

Installed Engine Parameters:

► % Thrust Loss =
$$C_{ram} \left[\left(\frac{P_1}{P_0} \right)_{ref} - \left(\frac{P_1}{P_0} \right)_{actual} \right] \times 100\% = 2.7\%$$

► % Thrust Loss =
$$C_{bleed} \left[\left(\frac{bleed mass flow}{engine mass flow} \right) \right] \times 100\% = 2\%$$

- ► Total Installed Thrust: 12,560 lbs. x 95.3% = 11,970 lbs.
- ► Specific Fuel Consumption = $1.25 \times SFC_{dry} = 0.975$

Wing Design RAE 5212 Transonic Airfoil

Overall Dimensions

- 56 ft wingspan
- 9 ft root-chord, 3.5 ft tip-chord
- 312.5 ft² planform area

<u>Geometry</u>

- 15° leading edge sweep
 - Based on historic data
 - Prevents local shocks from forming on the wing, and the associated loss in lift
- -2.5° geometric twist
 - Ensures root stalls before tip
- Swept Back Wingtips
 - Reduces wingtip vortices

High Lift Devices

- Leading-edge slats
 - 17% chord
- Single-slotted flaps
 - 60% span
 - 25% chord

Aileron Dimensions

- 40% of span
- 25% of chord

Performance

Vertical Tail Design

H-tail configuration

- Reduces side profile and radar cross-section of aircraft
- Keeps AC close to cg in vertical direction (reduced roll contribution from vertical tail)

Overall Dimensions

Rudder Dimensions

- 6.5 ft span
- 4.5 ft root-chord, 2.5 ft tip chord
- 45.5 ft² planform area, total

<u>Geometry</u>

 Leading edge sweep to ensure straight trailing edge

• 80% span

• 30% chord

NACA 0010 Airfoil

Horizontal Tail Design

Overall Dimensions

- 15 ft span
- 5 ft root-chord, 2.5 ft tip chord
- 56.3 ft² planform area
- 54.3 ft² projected area

<u>Geometry</u>

- 22° leading edge sweep
- 15° dihedral
 - Prevents interference from engine exhaust jet

Elevator Dimensions

- 90% span
- 30% chord

NACA 0012 airfoil

Landing Gear Design

General Dimensions •Tricycle configuration chosen •Sufficient clearance for fuselage, intakes, and ordnance •7 to 15 degrees tip-back angle •12.5 ft long wheelbase •9.5 ft wide wheelbase •Trailing link oleo for all gear legs

Nose Gear Dimensions •30.3 in diameter tire

Main Gear Dimensions •36 in diameter tire

Fuselage/Cockpit Design

Notable Specifications

- •120x30-in two-person tandem cockpit w/ ejection seats
- •20-in diameter head clearance
- •13° seatback angle
- •30° transparency grazing angle
 •Bullet-proof canopy
 •Ceramic component cockpit armor

Notable Specifications

- •51.51 ft length •12.17 ft width
- •5.62 ft Length
- •Fineness ratio: 4.2
- Over-nose angle: 17.9 degrees
 Heaviest components kept centered and high to keep close to wing aerodynamic center
 Fuselage shape designed to include internal components while preventing flow separation
 Ceramic component armor around engines

Wing Structure

Ribs and Spars Arrangement

- Skin A (0.16 in), Skin B (0.12 in), and Skin C (0.08 in)
- Skins further away from the root experience less loading, thus reduced thicknesses
- Ribs shaped after the chosen RAE5212 airfoil with decreasing sizes
- Three main spars run from wing root to tip, two intermediate spars run from wing root to the seventh rib
- All spars designed to be 0.82-inch thick
- More spars are constructed closer to the wing root to support the larger loading
- All wing structures except wing attachment: graphite-epoxy composites
- Wing attachment: Titanium

Wing Structure

Finite Element Analysis

- Elliptical lift distribution acting along wing quarter chord
- Factor of safety of wing: 1.6 (ultimate tensile strength vs absolute max principal stress)
- Maximum vertical displacement: 25.4 inches
- Stringers would be introduced at the high stress regions
- Flanges will also be used to help connect the spars to the skin
- At wing root, spars are 15 in from each other
- Stringers and flanges are spaced out by 5 in
- Thicknesses of the stringers and flanges are both 0.1 in

Fuselage Structure

<u>Components</u>: Semi-monocoque structure made up of frames, bulkheads, stringers, and skin

<u>Frames</u>

- Spacing: 19-24 in.
- Depth: 2 in.
- Material: High-strength graphite epoxy

Bulkheads

• Placed in parts of the fuselage experiencing large amounts of load

Central Fuselage

- Titanium alloy for bulkheads (Ti4Al4Mo2Sn)
- AI 7050 for skin
- Steel for engine mounts

Stringers

- Z-type cross-section
- Spacing: 10-12 in.

Refined Weight Approximation

<u>Methodology</u>: Raymer's statistical weight formulas for attack/fighter aircrafts

Maximum Takeoff Weight: 24266 lbs

Empty Takeoff Weight: 15643 lbs

Fuel Weight: 5162 lbs

Weapons

Weapon Selection

- 1. Gatling Gun
 - M61A1
- 2. Missiles
 - Air-to-air missile
 - AIM-9
 - Air-to-ground missiles
 - AGM-65 Maverik D-Variant
 - AGM-114 Hellfire (3)
- 3. Bombs
 - GBU-12
 - GBU-39 (4)
- 4. Air-to-ground rocket
 - Hydra 70 (7 or 19)

Weapon Release Mechanisms

- 1. Rail Launch
 - LAU-127
 - LAU-117/A
 - COBRA Single Rail Launcher/AGML III
- 2. Ejection Launch
 - IOMAX HSP Bomb Rack Unit
 - BRU-6/A
- 3. Rocket Launch
 - LAU32
 - LAU51

Weapons

Possible Mission and Weapon Configurations

- 1. Anti-armor
 - 2 AIM-9 missiles, 4 AGM-65D missiles, 6 AGM-114 missiles
 - Payload: 2962 lb
- 2. Heavy bombing
 - 2 AIM-9 missiles, 2 AGM-114 missiles, 4 GBU-39 bombs, 2 GBU-12 bombs
 - Payload: 3011 lb
- 3. Anti-personnel
 - 38 Hydra 70 rockets, 2 GBU-12 bombs, 2 AGM-114 missiles, 2 AIM-9 missiles
 - Payload: 3020 lb
- 4. General purpose
 - 2 AIM-9 missiles, 14 Hydra 70 rockets, 2 GBU-12 bombs, 10 AGM-114 missiles
 - Payload: 3012 lb

Visual of Mission 4 Configuration

Subsystems

The subsystems in the KY-11 include:

- A data bus, head-up display, and an ICNIA unit to relay and display flight information
- Two centrally located 210 kg/cm^2 hydraulic pumps
- Two 30kVA electric generators supplying 115/200v at a frequency of 400Hz
- OBIGGS and OBOGS units which form the environmental control system and receives pressurized air from a pneumatic system to control the environment within the cockpit
- An APU unit that will supply the hydraulic pumps with pressurized air and start the engines via power from DC batteries in case of failure

- The avionics found in the KY-11 include the navigational subsystems and radios, which are within the cockpit.
- Additional subsystems, which are typical for jet fighters, are used to allow the pilot to control the aircraft

Stability Analysis

Longitudinal Static Stability

- Neutral Point: 302.03 in
- Static Margin: 5.05%
- Pitch Moment Derivative: -0.4187

Trim Analysis

- Takeoff
 - Angle of Attack: 15°
 - Flap Deflection: 20°
 - Elevator Deflection: 18-18.5°
- Cruise
 - Angle of Attack: 0°
 - Flap Deflection: 0°
 - Elevator Deflection: 2-2.5°
- Landing
 - Angle of Attack: 8°
 - Flap Deflection: 30°
 - Elevator Deflection: 10-10.5°

Lateral Static Stability

- Wing Contribution: -0.0516
- •Tail Contribution: -0.0271
- Roll Moment Derivative: -0.0787

Trim Analysis • Aileron Control Power: 0.0119

Directional Static Stability

• Yaw Moment Derivative: 0.1875

Trim Analysis

- •Engine Out Case
 - •Yaw Moment Coefficient: 0.606
- Crosswinds-Landing Case
 - •Yaw Moment Coefficient: 0.0370/

Performance Analysis

- ► Top speed: 629 mph (Mach 0.82)
- Cruise speed: 537 mph (Mach 0.7)
- ► Service ceiling: 38,979 ft
- ▶ Range: 2,363 nmi.
- ► Total Endurance:
 - ► 5.85 hrs. for design mission
 - ► 4.43 hrs. for ferry mission
- ► Takeoff Distance: 3,600 ft
- ► Landing Distance: 2,294 ft
- Limit load factor: +9/-3 g

Weights

Center of Gravity (CG)

- X-direction (along fuselage): 24.8 ft aft of nose
- Y-direction: Along fuselage centerline due to symmetry
- Z-direction (vertical): 6.52 ft from ground

Weights

<u>CG Envelope</u>

- Forward and aft CG limits dictated by landing gear geometry
- Distance between forward and aft limits is 10.9% MAC (slightly higher than typical jet)
- KY-11 CG envelope shows that various CG's are within the forward and aft CG limits
- CG of the aircraft moves aft as mission progresses, making the aircraft more stable

Cost

The cost is broken down into three types of expenses:

- Non-recurring: initial, fixed costs
- Recurring: costs associated with the production of each unit
 - The recurring costs posted are the total values for the production of 50 units
- Operation and Maintenace: occur with each flight cycle

The unit cost is simply the sum of the nonrecurring and the recurring costs, divided by the number of units going into production, which is 50.

• Unit cost: \$60.5 Million

Non-Recuring Costs				
Development	\$165,281,928			
Testing	\$1,165			
Engineering	\$601,657,379			
Tooling	\$318,661,894			
Total	\$1,085,602,366			
Recurring Costs				
Manufacturing	\$562,191,200			
Quality Control	\$824,011,673			
Material	\$204,004,358			
Engine	\$250,000,000			
Avionics	\$100,000,000			
Total	\$1,940,207,231			
Operations c	Ind Maintenance			
Maintenance	e \$996.09			
Fuel	\$1,165.14			
Oil	\$5.83			
Total	\$2,167.06			

Questions?