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Important in determining the aerodynamic characteristics 
of the aircraft.

Airfoil Selection 

n Assumptions:
n Subsonic aircraft between 0.2 and 0.6 Mach
n Reynolds number range between 1 to 10 million 
n Analysis performed about the aerodynamic center of the airfoil
n 2-dimensional analysis for drag and moment

n Airfoil Camber
n Help determine the airfoil takeoff and landing range.
n Greater camber will give more lift at a given angle of attack.
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Airfoil Selection Continued

n Airfoil Thickness
n Determined by the historical data based on the design Mach number and 

thickness ratio.
n Impacts the airfoil’s drag, lift, stall characteristics, and weight. 
n The thickness ratio was found to be 0.15.
n Max coefficient of lift based on the thickness ratio for NACA 63A-415 was 

found to be 1.5.

n Airfoil Consideration Elimination Process
n NACA 4-Series was not considered because it was used primarily 

throughout the mid to late 20th century.
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Airfoil Selection Continued

n Airfoil Consideration Elimination Process continued 
n The 7-series and 8-series was not considered for this design because of 

their experimental nature and lack of similar historical usage.
n The 16-series was not considered because the primarily usage was 

propeller rather than wings.
n The 5-series was not considered because they had poor stall behavior and 

relatively high drag and weight.
n Only the 4-series and 6-series were viable options for our mission. The 

airfoils that was considered were plotted as drag polar curves that showed 
the coefficient of lift plotted against the coefficient of drag.
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Drag polar charts for the considered airfoils

Airfoil Selection Continued

n Curve results from airflow 
separation effects rather than a 
drag-due-to-lift calculation.

n Using wing loading determined 
from the required takeoff and 
landing distances to determine 
the target velocity of 200mph 
and resulted the target 
coefficient of lift at 0.748.

n NACA63A-415 was determined to 
be best airfoil for this design.
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Wing geometry include Aspect Ratio, Wing Sweep, Taper 
Ratio, Geometric Twist and Incidence Angle, etc.

Wing Geometry

n Aspect Ratio
n Low aspect ratio offers structural advantage for storage purposes.
n During subsonic flight, the lift to drag is proportional to aspect ratio.
n The aspect ratio determine through historical trend was 2.77.

n Wing Sweep
n Offers lateral stability at high speeds and improve response for low 

speeds.
n This design wing sweep angle was 5 degrees.

n Taper Ratio 
n The taper ratio determined from the quarter chord sweep was 0.2.
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Wing Geometry Continued

n Geometric Twist and Incidence Angle
n To mitigate manufacturing expenses, material constraints, and error 

propagation associated with optimizing a potentially-nonlinear twist 
distribution throughout the wing and noting compensatory stability 
contributions associated with wing sweep and dihedral, the geometric 
twist was determined to be 0.

n The wing incidence angle was determined 0 because the contribution of 
wing incidence for drag optimization in the context of attack aircraft is 
commonly assumed to be negligible.

n Vertical Displacement 
n For maneuverability and lightweight vehicle, the lower surface of the wing 

root lies approximately flush with the bottom of the fuselage. 
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Wing Geometry Continued

n Wing Dihedral
n The wing dihedral was found to be 4 degrees for this design’s subsonic 

swept wing.

n High-Lift Devices 
n Because the max coefficient of lift estimated was so close to the max 

coefficient of lift of the airfoil selected, the high-lift devices were 
considered as unnecessary.

n Aerodynamic Characteristics of the Wing 
n The aerodynamic characteristics were found by using XFOIL’s ‘visc’n

program and iteratively testing the airfoil at different angles of attack 
under different Reynolds and Mach Numbers
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Coefficient of Drag

Aerodynamic Characteristics Plots



DEPARTMENT	OF	MECHANICAL	&	AEROSPACE	ENGINEERING

Coefficient of Lift

Aerodynamic Characteristics Plots
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Coefficient of Moment 

Aerodynamic Characteristics Plots
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Engine types

n Important in determining capabilities, limitations, and design
n Fuel consumption, weight, and thrust had to be considered

n Main types of engines Considered
n Turboprop
n Turbofan
n Turbojet
n Piston-prop
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Early Elimination

n Two types eliminated early
n Piston Prop

n Too low performance
n Very low max speeds
n Unable to reach high altitudes
n Not enough power generation for payload

n Turbojet
n Too high performance
n Do not need such high speeds or power generation
n “Overkill” for mission at hand
n Less fuel efficient
n Greater runway distance needed  
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Remaining Considerations

n Turbofan and Turboprop
n Variations of of the turbojet
n Aim to be more efficient at lower speeds

n Applies the power of the engine to a cross section of air
n Turboprop: uses a propeller
n Turbofan: uses multiple fan stages 
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Bypass Ratio

n Ratio of mass flow rate of air coming in to air going out

n Turboprop has much higher ratio: 20 – 100
n High ratio reduces max flight speed

n Due to shockwave formation

n Turbofan is much lower: 0.2 - 5
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Fuel Consumption Comparison

n Turboprops perform better at lower altitudes
n Reduced air density is a hinderance at high altitudes
n Efficiency is a function of propeller diameter

n Turbofans perform better at higher altitudes
n Increased airframe drag at lower altitudes
n Efficiency s function of internal compressor limits

n Ex: Temperature
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Takeoff/Landing Distance

n Turboprop
n Can land on shorter runways: usually need ~ 3,000 ft.
n Can land on rougher terrain, like grass or dirt

n Turbofan
n Need longer runways: usually ~5,000 ft.
n Need concrete runways and more solid ground
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Final Engine Selection
n Trade studies were conducted on multiple engine models

Turboprop shows 
advantages in dry weight 
and Bypass ratio

Suitable power found for 
turboprops
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Final Engine Selection

n Turboprop showed many advantages over the Turbofan

n Final Selection: Pratt & Whitney Canada PT6A-68B Turboprop
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Final Engine Selection
n Parameters that led to Turboprop selection

n Flight Ceiling
n Payload
n Flight endurance
n Range
n Takeoff/Landing Conditions

n The selection of THIS model over the others was due to...
n Dry weight
n Bypass Ratio
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Propeller Design - Diameter

n Must be designed to achieve desired helical and static tip speed
n 290 m/s and 252 m/s, respectively

n Gives a diameter of 8 ft.
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Number of Blades

n Number of blades can not be too high or too low
n Too few: large pressure pulses, increased vibration and cabin noise
n Too man: compromises efficiency

n Our choice: 3 blades



DEPARTMENT	OF	MECHANICAL	&	AEROSPACE	ENGINEERING

Thrust

n Forward flight thrust: ~ 1,500 lbf

n Static Flight Thrust: ~2325 lbf
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Exhaust Design

n Placed directly behind the propellers

n Advantages of location:
n Protection from foreign objects
n Increased survivability
n Takeoff/land on a range of terrain
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Powerplant Location

n Tractor design: fuselage

n Allows for air to be cleaner when entering powerplant

n Provides greater stability
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Fuel System

n Bladder fuel tanks will be used
n Provide greater survivability through self-sealing technology
n Allows for storage in wing and fuselage

n 3300 lbs of fuel
n 61.4 ft^3 in fuselage
n 9.2 ft^3 in each wing

n Fuel Type: JP-8
n Commonly used in military aircraft
n Density allows us to be lighter

n Allows us to complete ferry and payload missions
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Landing Gear
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Configuration

n Design Options
n Tail Dragger – too unstable
n Tricycle – stable and versatile

n Nose does not need to be perfectly  
aligned with runway 

n Above average forward visibility of 
the ground
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Location

n Nose wheel must carry between 5% and 
20% of total weight

n Calculated angles
n Overturn: 45°
n Tipback: 15°
n Tailback: 10°

Wheel X-Location 
(aft of 
nose)
[ft]

Y-Location
[ft]

Z-Location
(off of 
ground) 
[ft]

Nose 2.99269 0.00000 2.771698

Left 11.00223 -1.93957 2.771698

Right 11.00223 1.93957 2.771698



DEPARTMENT	OF	MECHANICAL	&	AEROSPACE	ENGINEERING

Tire Sizing/Selection

Wheel Diameter [in] Width [in]

Nose 28.50 7.37

Main 35.94 10.54

n Tire Selection
n Nose: Type VII 30x7.7
n Main: Type VII 36x11
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CAD Drawings

Nose Wheel Assembly

Main Wheel Assembly
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Tire Pressure

Tire Pressure [psi]

Nose 37.47

Main 47.67 

n Surface Condition 
Limitations
n Nose Tire: hard packed 

sand to aircraft carrier
n Main Tires: dry grass on 

hard soil to aircraft carrier
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Shock Absorbers

n Oleopneumatic shock-absorber configuration
n Advantages: 

n Lightweight as compared to a spring system
n Absorbs the kinetic energy experienced by the landing gear 

during impact 

n This configuration leaves an excess of 29 in. to 
accommodate any foreseeable displacement of the propeller 
below the fuselage due to mounting configurations

Stroke [in] Oleo Total 
Length [in]

Diameter, 
main [in]

Diameter, 
nose [in]

17.43 52.29 3.90 2.66
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Retraction System

n Push-pull rod system
n Provides protection for the landing gear
n Improves aerodynamic properties

n Hydraulic system 
n Driven by selector and sequencing valves 

linked to actuating cylinders
n Design transmission systems for electric 

motors cannot withstand repeated impulses 
associated with landings
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Fuselage Design and Crew 
Station
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Fuselage Design
n Designed to hold up to 2 crew members

n Designed to minimize wasted space

n 37.05 ft. In length

n Streamlined profiles minimizes radar detectability
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Crew Station Design 

n ACES 5 zero-zero ejection system from Collins Aerospace
n 46 inches high, 24 inches wide, 32 inches deep
n 18 inches added for overhead, 30 inches for leg room
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Crew Station Design (cont.)
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Crew Station Design (cont.)
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Weapons and Survivability
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Weapons Carriage

n Parameters to consider include:
n Flexibility, safety, drag, and stealth

n Must be able to carry a 3,300 lb. Payload
n Range from rocket, missiles, and guns
n Dispersed over 5 hardpoints:

n 2 under each wing, 1 under the fuselage
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Weapons Selection

n Missiles
n 2 AIM-9L Sidewinder

n Air-to-Air Missile

n 2 AGM-65 Maverick
n Guided Air-to-Ground Missile
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Weapons Selection (cont.)

n Guns
n 1 FN Herstal M3P Machine Gun

n Mounted under the fuselage
n 2 GIAT M20A1 podded guns

n Integrated into the wings
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Weapon Carriage Selection

n AIM-9L Side winder
n Rail launch method

n AGM-65 Maverick
n Ejection method

n Due to large weight
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Placement of Weapons, Landing gear 
and Fuel tanks
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Placement of Weapons, Landing 
gear and Fuel tanks
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Stealth Features

n Slender Fuselage to reduce radar detectability

n Turboprop exhaust reduces IR detectability

n Light grey/blue paint on underside to blend into sky

n Turboprop creates less noise than other engines
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Vulnerability Considerations
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Structure
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V-n Diagram

1.

2. Peak load factor, high α

3. High-speed limit (dive)

4.

5. Cruise speed
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Fuselage Structure

n Semi-monocoque
n Load-bearing cross-sectional frames 

(bulkheads)
n Lengthwise/axial linkages (longerons)
n Aluminum shell
n Members along shell interior 

(stringers)

n Cost-effectiveness

n Weight reduction

n Fuel efficiency
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Fuselage Frame



DEPARTMENT	OF	MECHANICAL	&	AEROSPACE	ENGINEERING

Wing Structure

n Cross-sectional members (ribs); aluminum

n Spanwise members/linkages (spars)

n Composite laminate/sandwich shell; 
carbon-fiber

n Members along shell interior (stringers)
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Wing Structure
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Material Selection

[1]
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Stress Analysis
n Wing box simplification

n Cantilever model constraints

n Von-Mises stress varies 
between 0 and 44.2 ksi; does 
not exceed yield
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Displacement Analysis
n Interior structure subjected to max lift conditions
n Omission of shell/skin components
n Cantilever simplification
n Tip displacement does not exceed 8 inches
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Tail Design, Systems, Weight
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Tail Arrangement

n No unique stability 
considerations

n Weight optimization

n Spin recovery consideration
n At least 1/3 of rudder area 

unblanketed by turbulent 
wake from horizontal tail

[1]
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Tail Geometry

§ H/V volume coefficients of 
0.7 and 0.06

§ Tail arm: 60% of fuselage 
length

§ Sweep angle of 20

§ AR = 1.2

§ Taper ratio λ = 0.4

[1]

[1]
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Control Surface Sizing

n Notched balance

n Elevator area: 35% of 
horizontal tail

n Rudder area: 35% of 
vertical tail

[1]

[1]
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Tail Structure
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System Weight Estimation

n Controls: 530 lbs

n Instruments: 128 lbs

n Avionics: 632 lbs

n Electrical: 447 lbs

n Cooling: 38 lbs

n Furnishing: 435 lbs

n A/C and de-icing: 230 lbs

(Consolidated in crew-station model)

[1]
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Overall Weight/CG Estimation

Empty Weight: 8,754 lbs

Design Mission: 12,742 lbs
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Stability
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Stability Analysis

Stability Axis and Direction

Longitudinal Stability
• Concerned with aircrafts pitching stability under 

steady-level flight
• Aircraft must generate moments that oppose any 

change in angle of attack such as wind perturbations
• The change in pitching moment with respect to 

angle of attack must be negative

Pitching moment vs alpha

Pitching Moment Contributions
• Wing
• Fuselage
• Horizontal Tail
• Engine
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Pitching Moment Arms
• Center of gravity is measured from referenced datum, nose
• Aerodynamic center is measured using thin airfoil theory
• 𝑥!" = 𝑥"/$ + ∆𝑥!" 𝑆%&'(
• ∆𝑥!" = 0.26 𝑀 − 0.4 ).+

Chord Length and Aerodynamic Center for wings

Component Chord [m] 𝒙𝒄/𝟒 [m] 𝑺𝒓𝒆𝒇 [m2] 𝒙𝒂𝒄 [m]

Wing 2.032 0.508 7.439 0.521

Horizontal Tail 1.833 0.458 5.725 0.469

/𝑿𝒄𝒈 [m] /𝑿𝒂𝒄𝒘 [m] /𝑿𝒂𝒄𝒉 [m] /𝑿𝒄𝒈 − /𝑿𝒂𝒄𝒘 [m] /𝑿𝒂𝒄𝒉 − /𝑿𝒄𝒈 [m] /𝑿𝒄𝒈 − /𝑿𝒑 [m]

4.262 3.817 9.677 0.446 5.415 4.262

Moment Arms Measured from Datum
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Derivative of pitching moment with respect to angle of attack

• 𝐶!! = 𝐶"# #𝑋$% − #𝑋#$& + 𝐶!! "#$ − η'
(%
(&
𝐶"!'

)*'
)*

#𝑋#$+ − #𝑋$% + ,(!
-.)

)*(
)*

#𝑋$% − #𝑋/
• 𝐶!! = −0.376; Ensures longitudinal static stability

Variable Value Units

𝐶!! -0.3757

𝐶"# 1.488
7𝑋$% 4.262 [m]
7𝑋#$& 3.818 [m]
𝐶!! "#$ 5.192E-3

η' 0.9

S' 5.725 [m2]

S( 19.4 [m2]

𝐶"!% 1.239
𝜕𝛼)
𝜕𝛼

0.6

7𝑋#$) 9.677 [m]

𝐹*! 430.210 [N]

𝑞 4230.965 [pa]

𝑆& 19.4 [m2]
𝜕𝛼*
𝜕𝛼

1.2

7𝑋* 0 [m]
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Neutral Point and Static Margin

Neutral Point
• Occurs when derivative of pitching moment is zero

• !𝑋!" =
#@A $%BCD&#EAFGH&'I

JI
JK
#@AL

MAL
MA

$%BCL (
NOA
PQD

MAO
MA

$%O

#@A('I
JI
JK
#@AL

MAL
MA (

NOA
PQD

MAO
MA

Variable Value 𝐔𝐧𝐢𝐭𝐬
𝐶"+ 1.488

7𝑋#$& 3.817 [m]

𝐶!! "#$ 5.192E-3

η' 0.9

S' 5.725 [m2]

S( 19.4 [m2]

𝐶"!% 1.239

𝜕𝛼)
𝜕𝛼

0.6

7𝑋#$) 9.677 [m]

𝐹*! 430.210 [N]

𝑞 4230.965 [pa]
𝜕𝛼*
𝜕𝛼

1.2

7𝑋* 0 [m]
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Static Margin
• Distance between center of gravity and neutral point
• Positive static margin yields a stable aircraft since the

center of gravity is ahead of the neutral point
• 𝑆𝑡𝑎𝑡𝑖𝑐 𝑀𝑎𝑟𝑔𝑖𝑛 = #𝑋01 − #𝑋$%

Parameter Value

7𝑋,- 4.484 [m]

𝑆𝑡𝑎𝑡𝑖𝑐 𝑀𝑎𝑟𝑔𝑖𝑛 0.222 %
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Lateral-Directional Stability

Lateral Stability
• Affected by roll and yaw angle
• Negative rolling-moment derivative with respect to side slip angle is stabilizing, 

dihedral effect

• 𝐶'! = 𝐶'!" + 𝐶'!#$% + 𝐶'!& −
_'!
`a"

bc'
bc

2𝑋"( − 2𝑋d
• 𝐶e! = 𝐶e!" + 𝐶e!&

Parameter Value

𝐶.&' -0.02072

𝐶.&"#$ -0.005607451

𝐶.&( 0.129069562

𝐶.& 0.10028

Yaw Moment Coefficient Values
Parameter Value

𝐶/&' -0.08976

𝐶/&( -0.03175133

𝐶/& -0.121511328

Roll Moment Coefficient Values
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Trim Analysis

Static Trim
• Total pitching moment must be zero in steady-level flight

• 𝐶f() = 𝐶g 2𝑋"( − 2𝑋!"% + 𝐶f" + 𝐶f"*#𝛿h + 𝐶f#$% − ηi
j+
j,
𝐶g- 2𝑋!"k − 2𝑋"( − l

`a"
�̅�m +

_'
`a"

( 2𝑋"( − 2𝑋d

𝛿0 = −2 [deg] 0 [deg] 2 [deg]

α = 0 [deg]

𝐶!)*= 0.0236 0.0032 -0.0172

𝐶"+,+-. = −0.0376 0.0011 0.0376

α = 5 [deg]

𝐶!)*= 0.0021 -0.0182 -0.0386

𝐶"+,+-. = 0.4611 0.4987 0.5363

α = 10 [deg]

𝐶!)* = −0.0193 -0.0397 -0.0601

𝐶"+,+-. = 0.9598 0.9974 1.0350
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Performance
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Calculated with the Breguet Range Equation

Range Analysis

n Maximum Range (Internal Fuel Supply): 748 [nmi]

n Maximum Range (With External Fuel Tanks): 1447 [nmi] 

n Target Range (Design Mission): 200 [nmi]

n Target Range (Ferry Mission): 900 [nmi]
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Estimated using the Total Endurance Equation

Endurance

n Maximum Endurance (Internal Fuel Supply): 2.69 [hr]

n Maximum Endurance (With External Fuel Tanks): 5.21 [hr]

n Target Endurance: 4.00 [hr]
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The takeoff distance is the sum of three intermediary 
quantities

Takeoff Distance

n Ground Roll Distance

n Transition to Climb Distance

n Climb DIstance
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Distance Interval Value

Ground Roll 670 [ft]

Transition to Climb 827 [ft]

Climb 244 [ft]

Takeoff Distance

Total Estimated Takeoff Distance: 1741 [ft]

The landing distance was calculated using the approach angle, stall 
velocity and the height of the obstacle.
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Like the Takeoff Distance, the Landing Distance is calculated 
as the sum of several intermediary quantities

Landing Distance

n Approach Distance

n Flare Distance

n Ground Roll Distance
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Distance Interval Value

Approach 216 [ft]

Flare 294 [ft]

Ground Roll 1722 [ft]

Landing Distance

Total Estimated Landing Distance: 2232 [ft]

The landing distance was calculated using the approach angle, stall 
velocity and the height of the obstacle.
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Summary of Performance Analysis
n Maximum Range (Internal Fuel Supply): 748 [nmi]

n Maximum Range (With External Fuel Tanks): 1447 [nmi] 

n Maximum Loiter Time: 5.21 [hr] 

n Runway Takeoff Distance: 1,740 [ft]

n Runway Landing Distance: 3,424 [ft]
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Cost Analysis 
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Quick Cost Overview

Per Unit Cost: ~$21.7M
• Manufacturing: ~$14.2M
• Raw Materials: ~$4M
• Quality Control: ~$2M
• Engineering: ~$1.5M
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Non-Recurring Costs

n Separated into four parts
n Engineering
n Tooling
n Quality Control 
n Manufacturing

Hourly Rates 2012 $ Adj $ Hours Total Cost

Engineering 115 132.25 72598.29607 9601124.656

Tooling 118 135.7 68428.47558 9285744.136

Quality Control 108 124.2 6254735.744 776838179.4
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Acquisition Cost

n Procurement Cost of 50 A-55 Vulture aircrafts

n The cost per unit is the sum of all the values divided by 50

Costs Dollar Amount

Development- Support Cost, CD 4,073,616

Flight Test Cost, CF 20,063,991

Manufacturing Materials Cost, CM 203,528,974

Engine Production Cost, Ceng 33,062,417

Avionics Cost, CA 50,000

RDTE+flyaway 1,087,894,064

Cost Per Unit 21,757,881.28
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Operating Cost

n Separated into four main parts
n Fuel & Oil Cost
n Maintenance: 

n Material Cost/flight and per flight hour
n Tire Replacement
n Brake Replacement 

n Crew (2-man)
n Insurance

n 2% of total operating cost 

n $844.908/hr

Per Year Operational Costs: 
~$1M 
• Fuel: ~$318K
• Maintenance: ~$190K
• Crew: ~$473K
• Insurance: ~$20K
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