UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

CAMbox

Compact Autonomous Microbioreactor

Section 22695, Group 14

Marcela Abadia, Joao Pedro Dos Santos, Ashton Goan, Ollie Goodall, Brenden Modi, Audrey Myat, Wojciech Przepiora, Pelayo Urrios

- **Compact:** Smaller footprint allows for easier placement.
- Lower cost: Fewer materials used enabled use of higher quality OTS parts.
- Marketable: Compact, cost efficient, design makes it available to a larger audience.

M3A: Each unassembled component weighs under 50 pounds -C3: Moveable by one person after disassembly M4A: Less than 36 inches wide M4B: load of assembly IS lower than 600 pounds C4: Fits on a research benchtop, M4C: Bottom face dimensions must be smaller than 24 inches wide and 60 inches long Enclosure M12: Signs will be posted to the device warning users about volatile materials and to keep C12: Only nonreactive materials contact lab chemicals them far from the reactor M13: Waste will be stored and made safe until waste can be fully disposed of — C13: Appropriate for operation in a BSL-2 space M14: Exterior casing must always remain at a temperature under 44 Celsius or 111 C14: Has an exterior surface that is not too hot to comfortably touch Fahrenheit

Enclosure

Material Selection

- Constructed from ASTM A36 Steel
- Layer of Polyurethane Foam Rigid
 - Insulating R-value ≈ 5
 - Maintains internal temperatures

Enclosure

- Material Analysis
 - ASTM A36 Steel has a yield strength of 2.5e8 Pa
 - Maximum stress stress from gantry on supports ≈ 1.271e5 Pa

U) 3

Liquid Handling

Department of Mechanical & Aerospace Engineering

Liquid handling

Flow rate: 375 μL/s

UF

$$\bar{V} = \frac{2\pi}{60} \times 2250 \times (9.566 \times 10^{-3}) = 2.25 \ m/s$$

$$Q = 2.25 \times (1.66 \times 10^{-7}) = \frac{3.75 \times 10^{-7} m^3}{s} = 375 \ \mu L/s$$

No Aerosols, confirmed with Reynolds Number:

$$Re = \frac{997 \times 2.25 \times 4.6 \times 10^{-4}}{1.08 \times 10^{-3}} = 957$$

Dispense accuracy: ±0.03 μL

 $\pm 0.05^\circ \rightarrow 7200 \; steps \; per \; revolution$

screw lead: 1.5 mm

 $\frac{1.5}{7200} = 0.000208 \ mm/step$

Cross sectional area of syringe: $\frac{\pi (9.57 \times 10^{-3})^2}{2} = 0.00014 \ m^2$

$$0.000208 \times 0.00014 = \pm 3 \times 10^{-11} m^3$$

 $\pm 0.03 \, \mu L$

User interface

- Arduino will be inside the control box.
- Device connects to laboratory computer
- Sensors are compatible with Arduino.

Climate Control - Cooling

- Seifert 3152303 thermoelectric cooler
 - More compact
 - Better longevity
 - No moving parts
 - 200W cooling capacity
 - Temperatures as low as -10 C

Climate Control - Cooling

- Compact enclosure enables rapid heating & cooling.
- Variable-speed fan offers greater user control.
- 20C to 4C in under 12 minutes.

Climate Control – Circulation

- System utilizes forced convection.
- Variable-speed
 Supermicro fan.

UF

25.2 CFM with an outlet of 1.57in x 1.57in.

Maximum output air speed calculations:

Outlet area:

1.57[in] * 1.57[in] *
$$\left(\frac{2.54[cm]}{1[in]}\right)^2 * \left(\frac{1[m]}{100[cm]}\right)^2 = 1.5903 * 10^{-3}[m^2]$$

Volumetric flow rate conversion:

$$25.2\left[\frac{\text{ft}^3}{\text{min}}\right] * \left(\frac{1}{3.28}\right)^3 \left[\frac{\text{m}^3}{\text{ft}^3}\right] * \frac{1}{60}\left[\frac{\text{min}}{\text{s}}\right] = 0.0119\left[\frac{\text{m}^3}{\text{s}}\right]$$

Maximum output air speed:

$$\frac{0.0119\left[\frac{\text{m}^3}{\text{s}}\right]}{1.5903 * 10^{-3} \text{[m}^2\text{]}} = 7.48\left[\frac{\text{m}^3}{\text{s}^3}\right]$$

Department of Mechanical & Aerospace Engineering

Climate Control - Heating

200W DBK FGC3000 Series Fan Heater.

UF

- Built in DIN rail clip.
- Maximum temperature of 70 C.
- **300,000h+ lifetime.**
- Secondary function as defogger during cooling

UF

Department of Mechanical & Aerospace Engineering

Climate Control - Heating

Air Velocity v. Time to Reach Setpoint – Heating of a 50mL Conical Tube

 With selected fan: 20C to 70C in under 14 minutes. Analysis based on forced convection: cylinder in cross-flow

Department of Mechanical & Aerospace Engineering

Climate Control - Heating

$$T_{amb} = 70 C \qquad T_{s,ext} \qquad T_{s,int} \qquad T_{culture} = 20 C$$

$$R_{conv} \qquad R_{cond,t} \qquad R_{cond,c} \qquad = \frac{1}{\overline{h}A_1} \qquad = \frac{\ln\left(\frac{r_2}{r_1}\right)}{2\pi L_2 k} \qquad = \frac{L_3}{kA_3}$$

- Areas, radii, lengths from conical tube dimensions:
 - $A_1 = \pi d_o h = \pi * 30 \ [mm] * 115 \ [mm] = 10,838.49 \ [mm^2]$
 - $A_3 = \pi d_i h = \pi * 26 \ [mm] * 115 \ [mm] = 9393.36 \ [mm^2]$
 - $r_1 = 13 \ [mm], r_2 = 15 \ [mm], L_2 = 115 \ [mm], L_3 = 13 \ [mm]$
- Thermo properties for polypropylene (conical tube) surface at 20 C, air at 70 C, water at 20 C:

•
$$v_{air} = 20.92 * 10^{-6} \left[\frac{m^2}{s}\right]$$
, $k_{water} = 598.03 \left[\frac{W}{m*K}\right]$, $k_{air} = 30 * 10^{-3} \left[\frac{W}{m*K}\right]$

- Pr = 0.7, Pr_s = 0.707, k_{PP} = 0.165 $\left[\frac{W}{W^{*K}}\right]$
- For $1000 < Re < 2 * 10^5$: C = 0.26, m = 0.6
- For Pr < 10 : n = 0.37

UF

Modified convective heat transfer coefficient:

$$\overline{h} = \frac{\overline{Nu_d}k}{D}$$

$$\overline{Nu_d} = CRe_D^m Pr^n (Pr \setminus Pr_s)^{\frac{1}{4}}$$

$$\blacksquare \quad Re_D = \frac{VD}{v}$$

For fan speed 7.48 m/s:

•
$$Re_D = \frac{7.48 \left[\frac{m}{s}\right] * 0.03 \left[m\right]}{20.92 * 10^{-6} \left[\frac{m^2}{s}\right]} = 10,727$$

$$\overline{Nu_d} = 0.26(10727)^{0.6}(0.700)^{0.37}(0.700\backslash 0.707)^{\frac{1}{4}} = 59.695$$

$$\bar{h} = 59.695 * \frac{30*10^{-3} \left[\frac{W}{m*K}\right]}{0.03[m]} = 59.695 \left[\frac{W}{m^2*K}\right]$$

Heat transfer rate:

•
$$q = \frac{\Delta T}{R_{tot}} = \frac{343 \ [K] - 293 \ [K]}{2.748 \ [\frac{K}{W}]} = 18.197 \ [W]$$

Time required to reach setpoint:

•
$$t = \frac{Q}{q} = \frac{14974[J]}{18.197[J/s]} = 789.31[s] = 13.16[min]$$

Gas Control

UF

Exhaust Fan Rubber Seal

- Solenoid valves ASCO Red Hat
- Long life Equipment (5-20 million cycles)
- Two weeks of incubation

OD/FI Reader

- Includes:
- PMT Detector
- Filter Cube Chassis
- Excitation
 Filter glass
- Emission
 Filter Glass
- Dichroic Mirror
- Standard Mirror
- Xenon Lamp

Analysis Speed

 $\frac{Well \ Plate \ Dia.* \ (columns * rows + 2)}{Gantry \ Velocity \ Speed * Load \ Percentage} + (Analysis * well \ plates)$ $= \frac{0.0031 * (24 * 16 + 2)}{.513 * .6} + (0.15 * 384) = 61.95 \ Seconds$

- Cost
- OTS Parts: \$1507.02
- Material: \$53.68
- Manufacturing: \$60.30

OD Capability

Measures absorbance at 600 nm

FI Capability

Measures Texas Red Fluorescence

White Light

Illuminates well plate sample at 640nm 0.2 Kw/cm2

Lethality

The 600nm featured ranges ensure all cells will live!

M26: Hold conical tubes of 15mL and 50mL C26: Accommodates existing conical tubes of the following sizes: 15mL & 50mL

Shaker

Linear, orbital, and double orbital shaking patterns

- Uses springs and two motors to achieve a maximum velocity of 14.4963 m/s
- Interchangeable between well plates and tubes
- Tray designed with non-porous material

Governing Equations

$$\omega = \frac{RPM}{60 \ s/min} * 2\pi \frac{rad}{rev}$$

$$\omega = \frac{600 \ RPM}{60 \ s/min} = 62.83 \frac{rad}{s}$$

$$v = \omega r = 62.83 \frac{rad}{s} * 0.0381 \ m = 2.39 \frac{m}{s} \qquad v = \frac{10900 \ RPM}{60} * 2\pi * 0.012 \ m = 14.4963 \frac{m}{s}$$

Compact Round-Face DC Motor Max Speed 10900 RPM

Shaker – Acceleration

Acceleration to cause spillage and cross contamination of cell cultures

$$\begin{split} &\frac{\partial P}{\partial x} = -\rho \cdot a_x = 0 \rightarrow \text{No acceleration in the x axis} \\ &\frac{\partial P}{\partial y} = -\rho \cdot a_y \\ &\frac{\partial P}{\partial z} = -\rho \cdot (a_z + g) = -\rho \cdot g \rightarrow \text{No acceleration in the z axis} \\ &dP = \frac{\partial P}{\partial x} d_x + \frac{\partial P}{\partial y} d_y + \frac{\partial P}{\partial z} d_z = -\rho \cdot a_y \cdot d_y - \rho \cdot g \cdot d_z = -\rho \cdot (a_y \cdot d_y + g \cdot d_z) \end{split}$$

 $\frac{\partial P}{\partial z} = -\rho \cdot g \rightarrow \int_{P_2}^{P_1} \partial P = \int_{Z_2}^{Z_1} -\rho \cdot g \cdot \partial z \rightarrow P_1 - P_2 = -\rho \cdot g(Z_1 - Z_2)$ Apply equation along surface of the liquid, since pressure is constant

 $dP = 0 \rightarrow Constant \ pressure \ in the \ surface$

 $0 = -\rho \cdot \left(a_y \cdot d_y + g \cdot d_z \right)$

$$a_y \cdot d_y = -g \cdot d_z \rightarrow -\frac{a_y}{g} = \frac{d_z}{d_y} \frac{z}{y}$$

V

Shaker – Acceleration (Cont.)

Relationship of y since volume is constant

 $y = 2\frac{h_o L}{H}$

 $a_y = -g \cdot \frac{Z_2 - Z_1}{Y_2 - Y_1} = -g \cdot \frac{z}{y} = -g \cdot \frac{z \cdot H}{2h_o L}$

 $P_2 = \rho g(Z_1 - Z_2)$

Thus, maximum acceleration before the cell cultures overspill is

 $y = 2\frac{h_o L}{H} = 2\frac{(4 \text{ mm})(6.49 \text{ mm})}{10.3 \text{ mm}} = 5.39 \text{ mm}$ $a_y = -g \cdot \frac{z}{y} = -9.81 \frac{m}{s^2} \left(\frac{10.3 \text{ mm}}{5.39 \text{ mm}}\right) = 18.745 \text{ m/s}^2$

Shaker – Acceleration (Cont.)

Maximum acceleration of the shaker:

Linear:

$$v = \frac{10900 RPM}{60} * 2\pi * 0.012 m = 14.4963 \frac{m}{s}$$
$$\alpha = \frac{\pi (10900 RPM)}{1(30)} = 1141.445 \frac{rad}{s^2}$$
$$a = \alpha r = 1141.445 \frac{rad}{s^2} * 0.012 m = 13.69 \frac{m}{s^2}$$

Orbital and Double Orbital:

$$\alpha = \frac{\pi (13900 \, RPM)}{1(30)} = 1455.6$$
$$a = \alpha r = 1455.6 \frac{rad}{s^2} * 0.012 \, m = 17.47 \frac{m}{s^2}$$

Cost

Subsystem	Total cost
Enclosure	\$1468.54
Liquid handling	\$323.47
User interface	\$243.99
Climate control	\$1903.44
Gas control	\$1071.85
OD/FI	\$1580.61
Shakers	\$343.20
Total	\$6074.39

Why CAMbox should be selected for prototyping

- Efficient use of space and funds.
- Possibility to market outside of universities.
- All customer needs were met.

Conclusion

- CAMbox is a compact, cost efficient design.
- The autonomous microbioreactor is a single environment and can house cell cultures for 2 weeks.
- This design is meant to be targetted at an audience outside of the University.

Thank you!

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE