Hel10s Solar Solutions

Abstract

The design of the Hell0s Solar Solutions heliostat was based on a Hedgehog Concept prioritizing low cost and ease of manufacturing/assembly. The construction of each subsystem was optimized with this goal in mind to produce a heliostat that satisfied the customer needs. The mirror subsystem was designed using four thin, lightweight mirrors secured to the frame in slots that slide on and off to minimize assembly and replacement time. Each mirror has a dedicated stepper motor to control azimuth angle. The entire frame is oriented using two linear actuators about a custom universal joint, allowing the adjustment of elevation and azimuth of all four mirrors simultaneously. This not only reduces the total number of motors needed, but also eliminates shading between mirrors. The frame is mostly comprised of PVC, making it modular, lightweight, and cost-effective. The structure is anchored by burying the PVC legs, giving it extra support against wind forces without a significant impact on cost or manufacturing time. The heliostat module is also able to fold parallel to the ground when wind speeds exceed the safe operating threshold, preventing damage. The central computer uses an open-source solar positioning algorithm to track the Sun and sends signals to a microcontroller on each module to adjust the motors accordingly. This eliminates the need for delicate and expensive sensors on each module and reduces tracking errors due to ambient weather conditions.

Category	Ρ
OTS Parts	\$27
Modified OTS Parts	\$2
Raw Materials	\$22
Manufacturing Labor	\$22
Assembly Labor	
Energy Consumption	\$(
Total	\$72

rice 74.37 2.46 13.00 18.50 .2.36 0.16 20.85

Product Functionality

The Hel10s Solar Solutions heliostat module is designed for deployment near Las Vegas, Nevada in concentrated solar power where plant, a approximately 2,000 of these modules would be installed. Their combined power output of 1 MW will be used to drive a methane reforming reactor operating at 1,000 °C by focusing solar energy onto a 100 m high central receiver. Each module has 1 m² of reflective area from four mirrors. These modules incorporate a robust design that can survive the ambient conditions for over 20 years before requiring replacement parts.

EML 4501 - Fall 2021

Group 10: Joshua Brett, Daniel Drew, Jacob Jenkins, Wasif Kamal, Robert Principato, Justin Rietberg, Malone Stanley

> Mirror and Mount The mirror is used to reflect solar energy to the central receiver, and its mount secures it to the movement system. The mirror is an OTS part with aluminum reflective surface that slides into an aluminum slot on the bottom, with a second slot installed overhead. Both slots are secured to a round bar actuated by the movement system.

***** Movement two linear actuators. * Control

> The heliostat tracks the sun and orients itself accordingly using a solar positioning algorithm installed in a computer in the central tower, eliminating the need for each heliostat to have its own tracking hardware. A Raspberry Pi Zero W microcontroller installed on each module receives signals from the central computer and commands each motor to keep sunlight focused on the central receiver.

Frame Structure

Subsystems

Each mirror has a dedicated stepper motor to rotate it in the azimuth direction. The entire mirror frame is tilted in azimuth and elevation about a custom universal joint by

The frame is mostly made of PVC, reducing cost, weight, and manufacturing/assembly time. The structure legs are buried to prevent the module from sliding or tipping.

Hel10s Solar Solutions

N7) Receiver height range]	M7) 0 < receiver height < 100
N9) Automated tracking		M9) Controller operates autonomously 99% of time
N4) Max optical loss]	M4) Tracking error optical los 40%
N5) Track sun throughout day		M5a) Daily operational hours 11
N15) Ambient and solar conditions		M5b) 90° elevation, 180° azim
N13) 2 FOS		M15a) Max temp: 44.4° C
N14) Min operational lifetime		M15b) Max windspeed: 12.3
N11) Max part price		M13) N > 2
N8) Max cost		M14) Lifetime > 20 years
N3) Heliostat number		M11) Designed part cost < O part cost
N17) Min solar concentration		M8) Per unit cost < \$100/m
N18) Max heliostat distance		M3) 4-16 heliostats
N1) Innovations via small heliostat		M17) 1000 suns
N2) Max total area		M18) 100 meters from towe
N12) Washable reflective surface		M1) 3 design innovations
N6) Max shading		M2) Total area ~1 m ²
N16) Min thermal input power		M12) 95% original reflectant recovered
N10) Module area ~ reflective area		M6) Heliostat shading < 1%
		M16) 1 MW after loses
		M10) 90% of module surfac area is reflective

EML 4501 - Fall 2021

Group 10: Joshua Brett, Daniel Drew, Jacob Jenkins, Wasif Kamal, Robert Principato, Justin Rietberg, Malone Stanley

