EML4501 GROUP 9 - FALL 2021

Adrien Arias, Jarett Cox, Olivia Dodge, Zariq George, Cristian Hooker, Abraham Sheikh, Noelle Turner

HelioSmart

Herbert Wertheim College of Engineering Department of Mechanical & Aerospace Engineering UNIVERSITY of FLORIDA

ABSTRACT

The hedgehog concept of HelioSmart is to reduce the number of motors needed for a practical, simple design which eliminates unnecessary waste, maximizes profit, and reduces cost. Competitive cost efficacy is achieved with affordable, easily manufactured materials and only three motors per module. This small heliostat design includes a flangesupported pole structure manufactured from ABS polycarbonate. The 4-heliostat module is controlled remotely with a Raspberry Pi via Wi-Fi with a maximum range of 100 m. The central shaft rotation is achieved by a motorized belt and the azimuthal position is adjusted using stepper motor and gear combination. The reflective surface is a thin layer of silver under glass, which prevents oxidation and allows easy maintenance without sacrificing the highly desirable reflectivity of 95%. With only three motors, the design achieves 360° of rotation in increments as small as 0.5°. In addition to high maneuverability, the design boasts an efficiency of 50% afforded by minimal shading, maximum reflection, and limited light dispersion. This optimized heliostat delivers a useful power of greater than 1 MW and a solar concentration greater than 1000 suns. Given its continued elemental exposure in Las Vegas, Nevada, the module is designed to withstand wind loads of up to 136 N and preserve the computer system, motor, and gears through a protective enclosure. This thoughtfully designed heliostat provides the customer with a lifetime of up to 25 years to contribute towards a cleaner, greener future of energy.

PRODUCT FUNCTIONALITY

The HelioSmart module uses four individual reflective surfaces to redirect sunlight to a central receiver from up to 100 m away. The module consists of two sets of double-mirror heliostats for a total of four reflective surfaces. Each pair of heliostats uses a simple gear and motor configuration to vertically position the beam of sunlight on the receiver. The rotational motion of all individual heliostats used to position the mirrors horizontally with respect to the receiver is linked with a single motor, gear belt system, lazy-susan bearing. The entire module is secured by anchoring the flanges at the pole base in the ground.

KEY FEATURES

- One short pole and platform frame holding two heliostat mirrors
- Two base flanges to secure the structure
- One taller pole and platform frame holding an additional two mirrors
- Thermally resistant rubber belt gear driven belt
- Position-Control DC motor driving the belt system
- Two position-control DC motor-driven gear systems for vertical positioning
- Raspberry Pi Wi-Fi receiver to receive command signals and produce actuation

COST BREAKDOWN

OTS Parts	\$143.63
Modified OTS Parts	\$24.30
Raw Materials	\$142.35
Manufacturing Labor	\$15.00/hr
Assembly Labor	\$4.20
Energy Consumption	\$0.003/hr

REFLECTIVE SUBSYSTEM	STRUCTURE SUBSYSTEM
 Plane mirrors Silver-backed glass 95% reflectivity 	 ABS polycarbonate structure Platform for holding actuation components Base flanges for holding entire structure in the ground
ACTUATION SUBSYSTEM	CONTROLLER SUBSYSTEM
 Polyurethane rubber belt Grooves manufactured into pole structure Position-Control DC motor for driving the belt Ball bearings to allow the pole to rotate Position-Control DC motor used for vertical positioning 	 Raspberry Pi 3b+ Wi-Fi receiver for receiving signals from command station ABS polycarbonate box for limiting exposure to the elements and decreasing likelihood of overheating
	Reflection Platform
1-	Elevation Motor
0	Belts
Rotating Platform	
Azimuth Motor	Control Box

Base

HELIOSMART: NEEDS MAPPINGS

to 100 meters away. Therefore, the receiver range must be at least 100 meters.

Ideally none of the reflected light from any heliostat module should miss the receiver. While engineering calculations cand determine max heliostat distance. A max distance of 100 m is assumed.