ARES MISSION PHOBOS AND DEIMOS LANDING

Dylan Carter, Marley Downey, Sean O'Connell, Ethan Hinds, Rody Rodriguez, Brandon Fallin, Alex Black, Blake Dunn, & Shane Lovello

*

WELCOME TO THE ARES MISSION

Our firm will be partnering with NASA to usher in a new era of Martian exploration and knowledge

2

TABLE OF CONTENTS

Background and Cost

Mission basics

Launch Vehicle Selection

What we will use to . accomplish the mission

04 Scientific Objectives

03 Orbital Trajectories

How we will get to the mission site

EEV Subsystems

Spacecraft subsystem design and technology

What we will learn on-site

02

Crew Accommodations and Risk Analysis Keeping the crew safe and healthy

BACKGROUND

AND MISSION

COST

MARTIAN MOONS EXPLORATION EXCURSION VEHICLE

With the recent proliferation of private space exploration, NASA is looking to partner with an entity to explore the Martian moons, Phobos and Deimos

- Bridge the gap between robot mission on Mars surface and crewed landing on Mars
- Low cost, low impact
- No. EVA on Phobos and Deimos
- *EEV will dock with Deep Space Transport (DST) vehicle to return to Earth

DESIGN OBJECTIVES

Exploration Excursion Vehicle (EEV)

Support 2 crew members on a mission to both Martian moons lasting no longer than 30 days Scientific Achievement

Design scientific experiments and objectives to learn as much as we can about Phobos and Deimos within our budget

Sample Retrieval

Minimum sample quantity of 50kg of material from each moon. Must be brought back to the DST, and then Earth

COST ANALYSIS

Component/Subsystem	Cost Subtotal (USD)
Launch Vehicle + Refuel	\$10,000,000
Scientific Objectives and Experimentation	\$181,200,000
Exploration Excursion Vehicle	\$327,000,000
Rover	\$150,000,000
Telecommunications Equipment	\$10,000,000
Crew Accommodations	\$23,500,000
Total	\$701,700,000

LAUNCH VEHICLE SELECTION

What we will use to accomplish the mission

LAUNCH VEHICLE OPTIONS

Delta IV Heavy

Second-highest capacity launch vehicle in operation

Space Launch

System

NASA's newest launch vehicle designed for interplanetary exploration

Atlas V-401

Soon to be retired, operated by United Launch Alliance

Proton-M

Three-stage heavy vehicle • from Russia

Falcon Heavy

Old reliable from SpaceX

Starship

On the cutting edge of rocket technology from SpaceX

LAUNCH VEHICLE SELECTION CRITERIA

Maximum total payload allowed to Mars orbit

Can't afford any failures

Must be able to fit the EEV in its entirety

Total Cost

Need to make sure we come in under budget

COMPARISON TABLE

Launch Vehicle Approximate Cost (USD)		Stages	Fairing Height (m)	Fairing Diameter (m)	Max Payload to Mars (kg)
Falcon Heavy	\$170 million	2	13.2	5.2	16,800
Atlas V-401 \$130 million		2	10	4.2	1,025
SLS \$2 billion		2.5	31	10	20,000
Delta IV Heavy \$350 millio		2	11.2	4.5	8,000
Proton-M	\$65 million	3 or 4 (optional)	11.8	5.1	6,200
Starship \$2 million		2	18	9	150,000

FINAL SELECTION - SPACEX STARSHIP

\$2 Million

Estimated cost per launch

150,000 kg

Maximum payload to Mars orbit

9m Diameter, 18m Height

Fairing dimensions – more than enough for EEV

2024

Starship will be ready for commercial flights

16M Pounds

Of thrust generated by Starship engines

LAUNCH VEHICLE FINAL CONSIDERATIONS

Starship arrives to a Low-Earth parking orbit after its initial launch, but needs to be refueled before departing to Mars

- Will be accomplished by a single launch of another "tanker" Starship, loaded with fuel to be transferred to original launch vehicle
- Fuel transferred via docking in orbit
- Will incur an additional \$2-4 million cost
- Additional cost (\$6 million) added to budget to account for future changes to Starship program

STARSHIP FAIRING AND MOUNTING

STARSHIP FAIRING SPECIFICATIONS

- Starship's fairing is 18 m in height and 9 m in diameter
- Fairing deploys craft in a clamshell sequence
- EEV is 8 m at its widest point and 12 m tall
- Starship comes equipped with singlemanifest payload adapters, with which the EEV will be mounted 0.5m off-center to account for the off-axis center of gravity

TRAJECTORIES

03

How we will get to the mission site

HOHMANN TRANSFER CALCULATIONS

• Assuming circular orbits, the departure impulse can be calculated as:

$$\Delta v_1 = \sqrt{\frac{\mu_s}{R_E}} \left(\sqrt{\frac{2R_M}{(R_E + R_M)}} - 1 \right)$$

Where R_E and R_M are the distances of the Earth and Mars to the Sun, respectively, and μ_s is the gravitational parameter of the Sun.

The arrival impulse can be calculated similarly using the equation:

$$\Delta v_2 = \sqrt{\frac{\mu_s}{R_M}} \left(\sqrt{\frac{2R_M}{(R_E + R_M)}} - 1 \right)_{\perp}$$

The total time of the transfer is calculated as:

$$t = \pi \sqrt{\frac{(R_E + R_M)^3}{8\mu_s}}$$

These same equations are used to move in-between the moons and the DST.

EARTH TO MARS HOHMANN TRANSFER

2035 Departure

Initial ∆v	Final ∆v	Total ∆v
2.493	1.878	4.371
•	•	

2037 Departure

Initial ∆v	Final ∆v	Total ∆v
3.126	1.904	5.030

* units in km/s

POTENTIAL VISITING SEQUENCES

Total Δv (km/s) 4.284 4.746 6.510 6.363	
Sequençe 1: DST 👔 📩 Phobos 📩 Deimos 📩 DST 👘 .	
Sequence 2: DST Deimos Phobos DST	
Sequence 3: DST Phobos DST DST Deimos	*
Sequence 4: DST Phobos DST Phobos	

19

DST

DST

VISITING SEQUENCE DETAILS

DST to Phobos		Phobos to Deimos		Deimos to DST			Total		
Initial ∆v	Final ∆v	Total ∆v	Initial ∆v	Final ∆v	Total ∆v	Initial ∆v	Final ∆v	Total ∆v	Total ∆v
0.362	2.147	2.509	0.679	0.390	1.069	0.387	0.319	0.706	4.284

* units in km/s

DST TO PHOBOS VISUALIZATION

Ma 5

21

PHOBOS TO DEIMOS VISUALIZATION

* *

22

DEIMOS TO DST VISUALIZATION

Mars Inertial Axes 8 Jan 2040 13:18:48.000 Time Step: 1128.00 sec

MISSION TIMELINE

Notable Times

Earth to Mars Transfer: Time spent on Phobos: Time spent on Deimos: Visiting Sequence Duration:

196 days (~6.5 months) 12 hours 32 hours 5 days

Complete Timeline

 Earth Departure: June 20th, 2035
 12:00:00 UTCG

 Arrival to 5-sol Orbit: January 2nd, 2036
 12:00:00 UTCG

Departure to Phobos: January 5th, 2040 Arrival at Phobos: January 6th, 2040 Departure to Deimos: January 6th, 2040 Arrival at Deimos: January 7th, 2040 Departure to DST: January 8th, 2040 Arrival at DST: January 10th, 2040 12:00:00 UTCG 08:00:00 UTCG 20:20:00 UTCG 05:00:00 UTCG 13:00:00 UTCG 11:00:00 UTCG

LANDING SITE

SELECTION

* 25

LANDING SITE OVERVIEW

Concerns

- Energy Maximize sunlight to charge batteries
- Terrain Find smooth terrain to minimize tipping/damage risk to EEV

Environment

- Mars Orientation Mars' axis tilted 25° to orbital plane
 - Martian Moon Orientations Martian moons orbit approximately flat about Mar's equator, minimal axial tilt.
- Martian Moon Orbits Both tidally locked

Season

- January 2040 Late Martian spring
- More sunlight in Northern Hemispheres

PHOBOS

Location:

- Approx. 10° N, 335° W.
- Slight Northern position yields greatest sun exposure
 Flat terrain expected
 - based on latest surface analyses

27

DEIMOS

Location:

- Approx. 20° N, 120° W.
- Slight Northern position yields greatest sun exposure
 - Flat terrain expected based on latest surface analyses

SCIENTIFIC OBJECTIVES

What we will learn on-site

29

OBJECTIVES

A principal goal for this mission is to investigate the realm of physical science that would characterize both environments found on the moons of Mars; Phobos and Deimos. Subjects on the matter include but are not limited to physics, chemistry, and astronomy.

Address 7 main objectives
 Conduct various surface experiments swiftly to ensure mission completion within the 30-day envelope
 12 hours on Phobos & 32 hours on Deimos

4.1 SURFACE MATERIAL CLASSIFICATION

Objective

Survey and classify the composition of Mars's two moons

Carbonaceous (C-Type) Rock

Procedure

 Various dust and rock samples are to be collected in tubes and bins utilizing the rover and its robotic arms.

Material & Cost

Mission Designed Rover
 RAT- Rock Abrasion Tool
 Cost: \$100,000
 (Does not include rover material and production)

4.2 ADVANCED IMAGING

Objective

View both bodies across different portions of the electro magnetic spectrum

Material/Cost

 Gamma-Ray and Neutron Spectrometer
 Laser Altimeter
 Atmospheric and Surface
 Composition Spectrometer (IR-UV)
 Cost: \$12M

Procedure

Allow imaging instruments to capture the likeness of each moon during orbit and/or ascent/descent.

Hopkins Ultraviolet Telescope

4.3 MAGNETIC FIELD MEASUREMENTS

Objective

 Measure and confirm the lack of a significant magnetosphere surrounding each moon

Magnetometer with Particles and Fields package

Procedure

Measure the flux and spectra of energetic protons and electrons surrounding the moons. Also, surveying rocks allow us to draw inferences about past magnetic fields.

Material & Cost

Magnetometer
 Energetic Particle and
 Plasma Spectrometer
 Cost: \$50M

4.4 EXAMINE WEATHERING CONDITIONS

Objective

Seek to mark the differences in weathering conditions present. Solar energy, solar wind, and temperature variation will be some metrics for measure.

Material & Cost

 Dual Imaging Systemconsists of wide and narrow angle imagers
 Mössbauer
 Spectrometer
 Cost: \$10.1 M

Procedure

Map landforms, track variations in surface spectra and gather topographic information

NASA Messenger's Mercury Dual Imaging System

4.5 COLLECT SOLAR WIND SAMPLES

Objective

Deploy instruments with the intention to capture a significant amount of solar energy

Procedure

 Deploy solar sail once in orbit of each moon, at a point of zero acceleration.
 Use pressure sensors to evaluate the force exerted by the samples collected.

Material & Cost

Solar sail (9 m x 9 m)
 Solar panel
 Pressure sensors
 Cost: \$4M
 (No additional cost incurred by solar panels)

4.6 STUDY INTERNAL STRUCTURE

Objective

Determine if the internal structure is uniform or layered

Material/ Cost

Seismometer
 RIMFAX
 Cost: \$105 M

Procedure

Examine seismic waves and detect temperature variations below surface.

Seismometer and Heat Flow Probe from Mars' Insight Mission
4.7 TEST TELECOM EQUIPMENT

Objective

The crew will use radio receivers as radio telescopes to verify their utilization on both moons.

Procedure

Take advantage of low noise Martian environment to use receivers as networked deep space radio telescope.

Material & Cost

- Radio Receivers
 Networking Software
 Cost: \$10M
 - (Cost reflects cost of telecomm equipment; no additional cost incurred by science objective)

EQUIPMENT AND COST

Objective	Experimentation	Cost (US \$ FY2021)	
Surface Material	Mission Designed Rover	Included in Production	
Surface Material	Rock Abrasion Tool (RAT)	100,000	
Imaging	Gamma-ray/Neutron Spectrometer	4,000,000	
Imaging	Laser Altimeter	4,000,000	
Imaging	Atmospheric and Composition Spectrometer	4,000,000	
Magnetic Fields	Magnetometer (MAVEN)	25,000,000	
Magnetic Fields	Energetc Particle and Plasma Spectrometer	25,000,000	
Weather	Dual Imaging System	10,000,000	
Weather	Mossbauer Spectrometer	10,0000	
Solar Readings	Solar Panel	Included In Production	
Solar Readings	Solar Sail (9mx9m)	3,000,000	
Solar Readings	Pressure Sensor	1,000,000	
Internal structure	Seismometer	100,000,000	
Internal structures	RIMFAX: geological structure of subsurface	5,000,000	
Telecommunication		Included in Production	
TOTAL	\$181.2 M		

. 05

SUBSYSTEMS

EEV

Spacecraft subsystem design and technology

PROPULSION SUBSYSTEM

MAIN ENGINE SELECTION CRITERIA

Storability

The mission will take place across 5 years so the fuel must be storable for long periods

High Specific Impulse

The specific impulse of the engine must be high to lower fuel requirements

Thrust

The engine configuration must produce enough thrust to satisfy the mass of the spacecraft

Low Dry Mass

The engine should be light to reduce additional weight to the spacecraft

POTENTIAL ENGINES

Engine Thrust (kN) Mass (kg) $I_{sp}(s)$ Burn Time (s) ATE 20.0 58 347 1200 29.0 111 324 1100 Aestus Aestus 2 55.2 139 336 600 R-40B 4.0 7.23 293 23000

MAIN ENGINE SELECTION – ASTRIUS AESTUS ENGINE

Non-Cryogenic Propellent

The engine uses long term storable propellants MMH/N₂O₄ requiring no insulation in the fuel tanks

Thrust

The thrust of the engine configuration will produce a capable thrust to weight ratio of 0.2

Final Mass : Dry Mass ratio

Using the Tsiolkovsky equation the final mass of the rocket will be 4.12 times the dry mass of the spacecraft

Restartable

The engine is restartable up to 6 times which is necessary to complete the mission

POTENTIAL RCS ENGINES

.

Engine	Thrust (N)	Mass (kg)	l _{sp} (s)
KEW-1	29.0	0.53	266
R-6C	33.0	0.66	290
RM-1-2	4.41	0.32	238

RCS ENGINE SELECTION- MARQUARDT R-6C-

Sufficient Thrust

The engine produces enough thrust to maneuver the EEV

High Specific Impulse

The specific impulse of the engine is high allowing for minimum fuel consumption

FUEL TANK SIZING

Final Fuel Mass of the EEV

The final dry mass of the EEV is 11725 kg and given a 3.12 fuel to dry mass ratio 36582 kg of propellent are required.

Required Fuel Mass

The oxidizer to fuel ratio of the Aestus engine is 2.05 requiring 24583 kg of N_2O_4 and 11999 kg of MMH.

Required Propellant Volume

The propellent volume is found using the densities of the propellent of 1450 kg/m³ for N_2O_4 and 880 kg/m³ for MMH.

Fuel Tank Diameter

The diameter of the fuel tanks are found using the volume of propellent required at 3.19 m for N₂O₄ and 2.96 m for MMH.

PROPELLANT FEED SYSTEM

Pressurized Gas

*

Tank Pressure Regulator Tank Pressure Regulator Fuel Oxidizer Valve Valve RCS RCS Engines

POWER SUBSYSTEM

* * * *

48

POWER REQUIREMENTS

- Power requirements taken at peak expectation for each sub-system
- Largest source of continuous power will be produced using solar panels

Sub-System	Power Requirements (W)
Propulsion	220
Telecommunication	300
Scientific Objectives	526
Thermal System	384
Life Support	1773
Power	120
Rover	100

SOLAR PANEL SELECTION- ORBITAL ATK MEGAFLEX ARRAY

Scalable size

Options up to 10m diameter with energy from 0.5 kW to 20 kW

High Power

High power up to 200 W/kg Strong and Lightweight

The MegaFlex array is strong and lightweight with a history of successful flights

BATTERY TRADE STUDY

High energy density

The highest energy density will reduce the mass and cost of the power system

Cost

The cost of the batteries for the overall power system is prioritized

Battery	Power-Weight Ratio (Wh-kg)	Safety
Ni-Cad	30	High
Li-lon	150	Med
Ni-H ₂	60	Med

BATTERY SELECTION - SAFT LITHIUM-ION - VL51ES BATTERY

High Power to Weight Ratio

The VL51ES batteries have a power to weight ratio of 130 Wh/kg

Stackable Configuration

The VL51ES batteries are easily stackable allowing a configuration to store all required energy.

POWER CONFIGURATION

Battery Configuration

The EEV will require battery power when solar isn't available. Needing 3.323 kWh the EEV will carry 26 VL51ES batteries.

Total Peak Power

The total power consumption at peak times of the EEV is 3.323 kW

Solar Panel Production

The MegaFlex solar panel will produce the required peak power at a diameter of 5.33 m.

Rover Power

The rover requires 100 W of power at peak and will need a solar panel of 0.22 m diameter and two VL51ES batteries.

POWER DISTRIBUTION

Solar Panels

Life Support System

Thermal System

Telecommunication System

Propulsion System

Batteries

Power System

54

THERMAL CONTROL

SUBSYSTEM

55

THERMAL CONTROL

Temperature Requirements

- < 40°C for electronics
- 18°C 24°C for crew members

Thermal Control Outputs

- Mass: 2907 kg
 Volume: 4:63 m³
- Power: 384 W

Thermal Control Systems

Component	Mass (kg)	Volume (m ³)
MLI	2240	2.80
Radiators	350	1.32
Heat exchangers	20	0.03
Cold plates	84	0.20
Pumps	80	0.28
Fluids	26.7	-
Redundant valves and fittings	80.1	-
Controls	26.7	-

RADIATION MANAGEMENT

• • • • • • • • • • •

*
*
*
*
*
*
*
*

RADIATION SHIELDING OPTIONS

Kevlar

- ρ=1,400 kg/m³
- Radiation shielding capabilities in space observed through ISS experimentation

Water

- ρ=1,000 kg/m³
- Traditionally used in nuclear reactors to slow down neutrons
- Has not been flight tested

Gadolinium Oxide Polymer

- ρ=741 kg/m³
- Experimental material developed by researchers at NC State, not flight tested

RADIATION SHIELDING SELECTION

Gadolinium Oxide Polymer

- Mass needs to be conserved as much as possible on this mission mass budget already dominated by other important needs of the crew
- Short duration of mission on EEV (5 days) means insignificant amount of radiation will be absorbed by each person
- Gadolinium Oxide polymer is 30% more effective than Kevlar and Water at radiation absorption, and is nearly 50% less dense than Kevlar
- Will include a radiation protection layer of 3 cm (derived from half-value thickness of Kevlar)

TELECOMMUNICATIONS

SUBSYSTEM

60

COMMUNICATIONS: BACKGROUND

Historical Systems

- Mariner S band
- Viking Adds X band
- 1990's Adds Ka band
- Mars Landers/Rovers Utilize UHF to communicate to orbiters
- Ares: Primary UHF for local comms, emergency X/Ka band for direct-to-Earth comms

Lag Times

• 4 to 24 minutes

Data Rates

- Mars 2020 Perseverance Rover 2
 Mbps local, up to 3 kbps direct-to-Earth
- **Ares:** 1 Gbps local, 100 kbps direct-to-Earth

COMMUNICATIONS: LINK BUDGET

EEV-Earth Downlink			
T _x Antenna	3-meter High Gain		
Frequency	31 GHz (Ka Band)		
Max Distance	401,000,000 km		
R _x Antenna	70-meter DSN		
Data Rate	100 Kbps		
Bandwidth	100,000 Hz		
System Noise Temperature Model	50 K		
Modulation	QPSK		
BER	1.0E-06		
Required E _b /N _o	11 dB		

Link Budget				
Value	Magnitude	Unit		
Transmit Power	100	Watts		
Efficiency	0.7			
Transmit Power in dBW	18.45	dBW		
Transmitter Gain	58.23	dB		
EIRP	76.68	dBW		
Free Space Losses	-294.34	dB		
Misc Losses	-10	dB		
Receiver Gain	85.59	dB		
Received Power	-142.07	dBW		
E _b Received	-192.07	dBW/Hz		
N _o	-211.61	dBW/Hz		
Received E _b /N _o	19.54	dB		
Link Margin	8.54	dB		

COMMUNICATIONS: DESIGN SPECIFICATIONS

Overview of Hardware Specifications

- Antenna: 3-meter High Gain
 - 0 **20 kg**
- Transceivers:
 - \circ UHF + X/Ka bands
 - o^{*} 10 kg ∘
 - ό ,70 ₩
- Amplifiers
 - ب X, Ka band Travelling Wave Tube Amplifiers (TWTA)
 - 0__10 kg
 - 100 W each
- Misc. Hardware
 - +100% weight (40kg)
 - ° +10% power (30 W)

Weight Allowance: 80 Kg Power Allowance: 300 W

63

COMMUNICATIONS: SAMPLE BLOCK DIAGRAM

• UHF/X/Ka system demonstrated on NASA Mars Reconnaissance Orbiter:

Figure 2-1. MRO Telecom Subsystem block diagram.

Figure: Taylor, Jim, et al. "Article 12; Mars Reconnaissance Orbiter; Telecommunications." DECANSO Design and Performance Summary Series. National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California. September 2006.

THE **EXPLORATION EXCURSION**

VEHICLE

EEV AT A GLANCE

-Accommodates lack of EVA -Crew Space: 222* cubic m -Deployable Solar Panels -Home to 2 crewmates -Primarily composed of 2219-T6 Al and MLI - Dry mass of 11,725.6 kg

THE ROVER LIFT

- Hydraulic Lift
- Sealed Rover Storage Area
- Variable height for ease of access

DOCKING ENTRANCE

- Enlarged ISS standard docking system
- 2.5m diameter entrance
 Allows for larger science equipment to enter
 DST will have matching system

Moments of Inertia (kg * m²)

lxx	49410475	Ixy	6769154	lxz	10762826
lyz	6769154	lyy	40014354	lyz	20662712
lzx	10762826	Izy	20662712	lzz	18757429

DESCENT AND LANDING

- The EEV will descend with a downward acceleration of 0.5 m/s².
- The six landing legs will take on a 3 MPa force during this landing.
- Landing legs will be made from 6061 Aluminum Alloy to minimize mass as determined by the following trade study:

Material	Compressive Strength (MPa)	Density (kg/m³)
Stainless Steel	152	8050
6061 Aluminum Alloy	276	2700
Titanium Ti-6Al-4V	130	4420
Cast Iron	400	7200
Nickel-Chromium	25	7768

THE ROVER

- Small and ManeuverableSample Collection Method
- Sample Storage
 Multiple Scientific Equipment
 Power Supply
 Total Mass~700kg

MANUVERABILITY

- Designed to allow sample collection at multiple regions
- Tracks multiple areas for the possibility of variations in regolith and other aspects of data
- Rover is equipped with imaging and sensors to allow autonomous control when crew is performing tasks as well as a safety measure

SAMPLE COLLECTION

- Rover arms will grab test tubes and scoop up regolith
- Samples will be collected at numerous depths using RAT to grind away surface material

SAMPLE CONTAINERS

Volume: 3.506E-3 cubic m
5.157 kg per sample
10 samples per moon
51.57 kg of samples
GROUNDING AND WHEELS

Support Rod

 Due to the very low gravity on both moons, grounding when collecting samples allows for stability

Traction

The rover will be equipped with wheels capable of gripping the regolith so no slipping occurs when collecting samples

ROVER COMPONENTS

- 6 18V Brushed Planetary Gear Motors 76RPM
- Batteries: 2 16Ah 22.2V Lithium Ion Batteries
- Battery Box: Composite Honeycomb with Aerogel to preserve temps
- CCD Image Sensor
- Ultrasonic Transducer
- Intel NUC Processor
- Solar Panel To Help Batteries
- RIMFAX
- Mossbauer
- Total Weight: 810 kg

CREW ACCOMMODATIONS

Keeping the crew happy and healthy.

KEY CONSIDERATIONS

Food and Water Allocation

Support 2 crew members on the EEV with proper nutrition to carry out the mission

Management

Dispose of any waste generated on the EEV over the course of the 5day mission

Housekeeping and Miscellaneous

Keep crew members happy, productive, and healthy

EEV INTERIOR

- Two "floors" with access through center
- Science Equipment Storage
- Medical Supplies
- Restroom/Bathroom
- Heaters
- Sleeping Arrangements
- Rover Access Hatch
- Fitness Accommodations
- Rehydrator & Conduction Oven
 60 Gallon Water Tank

FOOD AND WATER ALLOCATION

Food Requirements

- 2,500 calories per day, per person (minimum)
 - 600 calorie breakfast
 - 900 calorie lunch and
 - dinner

Water Requirements

- 1 gallon per person, per day
- Used for drinking, bathing, and rehydrating meals

FOOD AND WATER ALLOCATION CONT'D

Food Quantities

- 3 meal containers per person, per day (breakfast, lunch, and dinner).
- Additional 10 days of food included for each crew member in event of mission extension
- Water added to dehydrated meals before consumption
- ~0.6 kg per meal
- 54 kg of food on EEV

Water Quantities

- 1 gallon per person, per day
- Surplus of 50 gallons supplied in case of
 - emergency
- 227 kg of water on EEV

ent of

UNIVERSAL WASTE MANAGEMENT SYSTEM

UWMS Fact Sheet

- \$23 million USD cost
- Weighs 50 kg
- Pulls 274 W passively, 380 W when in use
- Adapted for both male and female use
- Manual waste compression using lever (200 N of force)
- More efficient to store waste on-board than to develop system to vent waste into space
- Approximately 20 kg of urine and 2.5 kg of feces will be produced during mission
- Waste storage equipped with activated charcoal filters to minimize bacterial spread and smell aboard EEV
- Will be used aboard Orion capsule and ISS in the near future

HOUSEKEEPING AND MISCELLANEOUS NEEDS

Hygiene Maintenance (Per Crew Member)

- 2 toothbrushes, 2 tubes of toothpaste
- 2 containers of dry shampoo
- 15 washcloths
- 2 towels
- 5 razors

Additional Everyday Items (Per Crew Member)

- Sleeping bag and restraints
- Set of resistance bands for exercise
- 2 one-gallon canvas zipper bags
- First-aid kit
- Photography equipment
 - Canon 5D MKIV
 - o Canon 100-400mm telephoto lens
 - Canon 24-70 wide angle lens

Interior Atmospheric Regulation

Gases Present in Cabin

- Carbon Dioxide
- Oxygen
- Ammonia
- Methane
- Acetone
- Methyl Alcohol
- Nitrogen

Gases Desired in Cabin

- • Oxygen
- Nitrogen

Atmospheric Systems

Waste Gas Elimination

- Bosch Carbon Dioxide Reduction System
- Silica gel for humidity control (60%)
- Activated carbon filters for ammonia, methane, acetone, methyl alc
 - \circ Removes 3.6 pounds of carbon per day
 - Produces 10.8 pounds of water per day
- Pressure relief valves to maintain appropriate pressure (about 1 atm)

Gases Desired in Cabin

- Solid Polymer Electrolyte Electrolysis System to provide oxygen
 - Produces 2 pounds of oxygen per day
- Compressed Nitrogen to be released as needed

CREW ACCOMMODATIONS MASS BUDGET

Crew Accommodation	Mass Subtotal (kg)
Waste Collection	50
Generated Feces and Urine	22.5
Personal Hygiene	17.5
Housekeeping	7
First-Aid	3
Food and Water	280
Photography	10
Total	390

CONOPS

Þ

Mission overview and summary

CONOPS OVERVIEW

Depart from Earth

Ascend from Phobos, transit to Deimos. When close to orbit start measuring magnetic field, imaging experiments, and solar wind capture.

Land on Deimos, deploy RC rover, collect samples, return samples to EEV, perform surface experiments. Land on Phobos, deploy RC rover, collect samples, return samples to EEV, perform surface experiments.

Ascend from

Deimos, transit

to DST

Refuel Starship in

Earth's orbit

Transit out to Phobos. When close to orbit start measuring magnetic field, imaging experiments, and solar wind capture.

Dock with DST,

transfer materials

and astronauts to

DST

Transit to Mars 5

sol orbit

EEV and astronauts depart the DST and seal the airlock

DST vehicle

arrives

Depart Back to Earth

RISK ANALYSIS -

A risk analysis of various mission stages was conducted to identify unacceptably high risks and develop risk mitigation strategies.

Risk Statements

Number	Risk	Consequence	Likelihood Score	Consequence Score
1	EEV delivery delayed.	Potential to miss launch window and miss rendezvous with DST.	з	З
2	Selected launch vehicle does not meet requirements.	Selected launch vehicle becomes unusable; alternative may be required with delays and increased costs.	4	4
3	Solar panels fail to deploy.	EEV is unable to charge batteries; potential total mission failure.	2	5
4	EEV is struck and damaged by orbital debris.	Potential risk to astronauts and mission completion	1	3
5	EEV Flight/thrust is imperfect.	EEV may require more delta-v and fuel than modeled.	4	3
6	DST fails to capture EEV.	Astronauts unable to enter EEV. Total mission failure.	2	5
7	On-orbit EEV systems failures (non-payload).	Potential risk to astronauts and mission completion.	2	4
8	On-orbit EEV systems failures (science payload).	Potential risk to mission completion.	3	4
9	Landing/Launching maneuvers cause damage to the EEV from debris or terrain.	Potential risk to astronauts and mission completion.	3	4
10	Rover fails to function or retrieve samples	Failure of primary mission objective.	3	2
11	Rover fails to deploy or be recovered due to deployment mechanism mechanical failure.	Failure of primary mission objective; potential risk to astronauts.	2	2

Mitigation Strategies

Number	Mitigation Strategy	Likelihood Score	New Consequence Score
1	Front-load delivery timeline to allow for slippage. Use flight- proven suppliers.	2	1
2	Pre-select alternative launch vehicle to confirm launch capability	4	2
З	Robust testing. Use of flight-proven hardware. Astronauts may perform EVA to manually fix arrays.	1	3
4	Hardening of exterior surfaces where practicable.	1	2
5	Incorporate extra fuel for additional maneuvering.	4	1
6	Robust testing and modeling. Use of standardized, flight-proven hardware.	1	5
7	Robust testing. Use flight-proven systems where practicable.	1	3
8	Robust testing. Use flight-proven systems where practicable.	1	3
9	Impact-resistant outer layer of EEV. Careful selection of landing sites.	1	3
10	Robust testing. Use flight-proven systems where practicable	2	2
11	Robust testing of deployment mechanisms; designed failure modes to mitigate debris risk.	1	1

MITIGATED RISK MATRIX

THANKS! Do you have any questions?

90