UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Hel10s Solar Solutions Heliostat Module Design

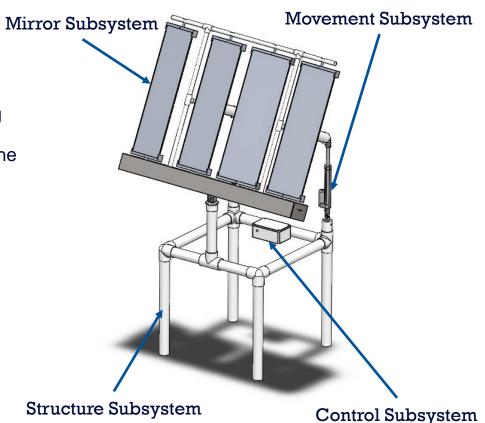
Section 13337, Group 10

Joshua Brett, Daniel Drew, Jacob Jenkins, Wasif Kamal, Robert Principato, Justin Rietberg, Malone Stanley

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Design Motivation and Value Proposition

- Most Economical Heliostat Design
- Saves time and money
 - Low-cost OTS parts
 - PVC support structure
 - Minimize number of motors
 - Easily manufactured parts
 - Modular Design

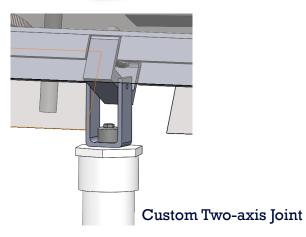


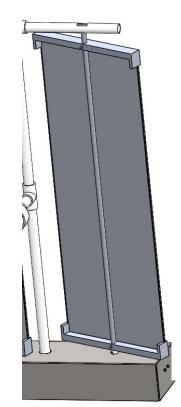
Department of Mechanical & Aerospace Engineering

Product Overview

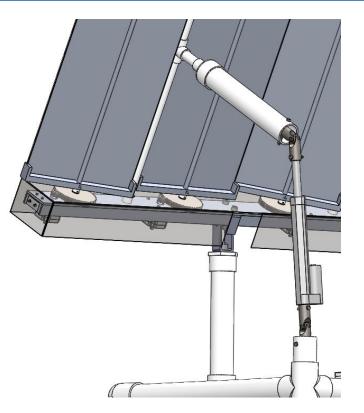
Heliostats are mirrors that move in two axes to track the sun and focus light to a central source **Project Description**

- Design a low-cost, small scale, modular tracking heliostat to be used in a larger array to generate enough solar power and heat energy to satisfy the customer's needs.
- Overall Product Dimensions
 - Height: 2.1 m
 - Width: 1.3 m

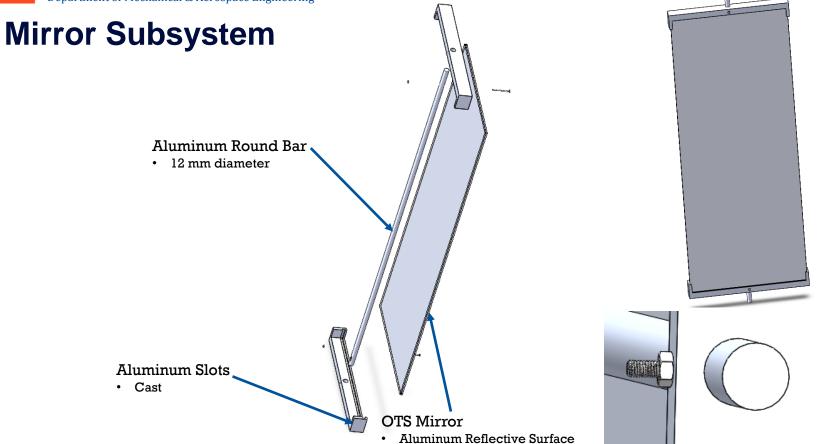



Cost-effective, Lightweight PVC

frame


Key Features

UF


Long rectangular mirrors (OTS, no adhesive required, glass-coated)

Dual azimuthal drive (simultaneous heliostat elevation)

Mirror Subsystem – Aluminum Reflective Surface

- Silver has higher reflectance (0.95-0.97), Aluminum 0.87-0.92
- Drawbacks of silver
 - More expensive
 - Surface degrades when used in heliostats
 - Darkened spots proliferate, reducing performance

Image courtesy of InnoGlass Technology

Mirror Subsystem Design Analysis

• Number of heliostat modules required, N:

Assumptions:

- Solar Flux, q = 1,000 $\frac{W}{m^2}$
- Optical efficiency, n = 0.5

Known:

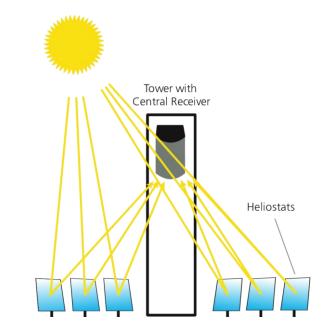
UF

- Module Collection area, $A = 1 m^2$
- Required thermal input power, Q = 1 MW
- $N = \frac{Q}{qAn} =$ 2000 heliostat modules

Gemasolar concentrated solar power project Image courtesy of Sener Group

Mirror Subsystem Design Analysis

 Receiver area for concentration ratio > 1000:


Assumptions:

• Concentration Ratio, $CR = \frac{A_{ref}}{A_{rec}}$

Known:

• Total reflective area, $A_{ref} = 2000 m^2$ $1000 > \frac{2000}{A_{rec}}$ $A_{rec} < 2m^2$

 $A_{rec} = 1.95 \text{ m}^2$ to minimize losses with desired CR

Methanol production via solar reforming of methane - Scientific Figure on ResearchGate.

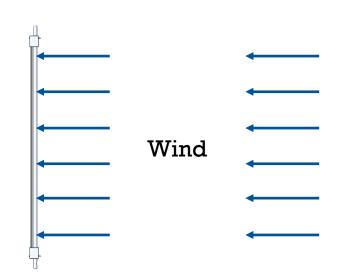
Mirror Subsystem Design Analysis

• Mirror wind loading

Assumptions:

UF

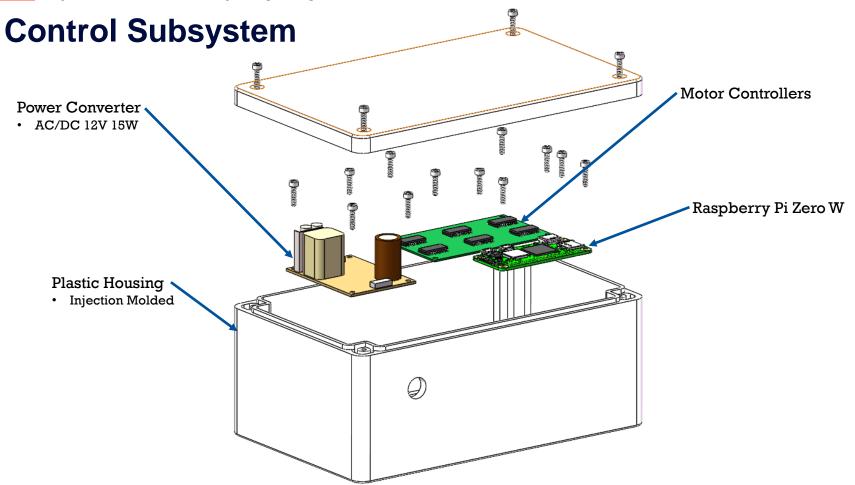
- Max operating wind speed of 35 MPH (15.65 m/s)
- Wind load perpendicular to mirror
- Tensile strength of glass set at 7 Mpa
- Density of air = $1.225 \frac{kg}{m^3}$


Wind load calculation:

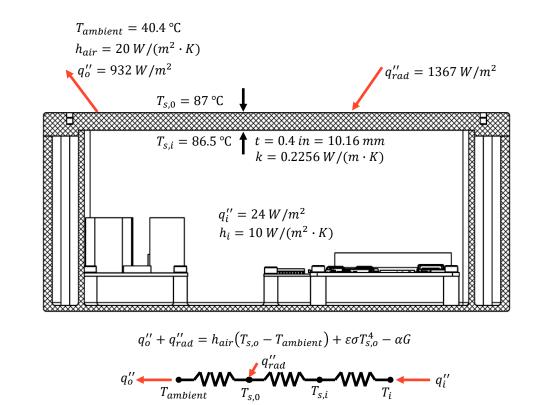
• $q = \frac{1}{2}\rho V^2 = 150 Pa$

Max stress and deflection:

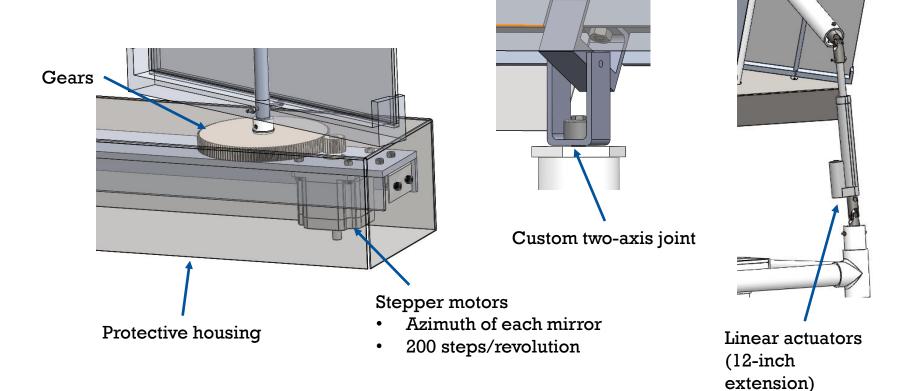
• $\sigma_{max} = \frac{\beta q b^2}{t^2} = \mathbf{0}.\mathbf{2718} MPa$


•
$$\delta_{max} = \frac{-\alpha q b^4}{E t^3} = 11.87 \, \mu m$$

Equation inputs:


- β = 0.668
- α = 0.1236
- b = 312.5 mm
- t = 6 mm
- E = 68.935 GPa

Controller Subsystem Design Analysis


- Interior Temperature
 - G = 1367 W/m³
 - $\sigma = 5.67 \times 10^{-8} \,\text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$
 - T_{s,i} = 86.5 °C
 - $T_i = 83.2 \ ^{\circ}C$

 $q_i'' = \frac{T_{s,o} - T_{s,i}}{t/k} = \frac{T_{s,i} - T_i}{1/h_i}$

Department of Mechanical & Aerospace Engineering

Movement Subsystem

Movement Subsystem Design Analysis

• Diameter of Joint Pin

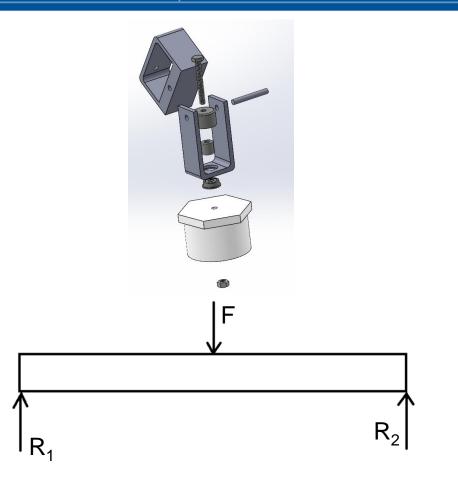
Assumptions:

• Simply supported beam

Known:

٠

UF


- 6061 Aluminum, $\sigma_{yield} = 276$ MPa
- Total mirror frame weight = 27.88 kg
- Length of pin = 45 mm

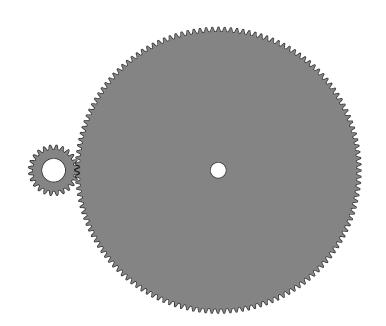
Bending moment analysis results

•
$$D_{min} = \left(\frac{8FL}{\pi\sigma_{yield}}\right)^{\frac{1}{3}} = 5.33 \text{ mm}$$

For factor of safety = 2

• Actual pin diameter = 6 mm

Movement Subsystem Design Analysis


Stepper Motor Gear Ratio

Known:

UF

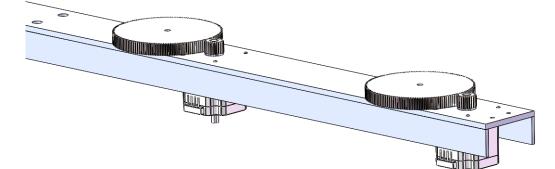
- Distance from furthest heliostat = 141.42m
- Motor step size = 1.8°,
 - $\Delta x_{1.8} = (141.42 \text{ m}) \tan(1.8^{\circ}) = 4.44 \text{ m/step}$
- Desired step size = 0.3°,
 - $\Delta x_{0.3} = (141.42 \text{ m}) \tan(0.3^{\circ}) = 0.74 \text{ m/step}$
- Required gear ratio = 6
- Gear 1
 - 0.75 in. diam
 - 24 teeth
 - 32 teeth/in. pitch
- Gear 2
 - 4.5 in. diam
 - 144 teeth
 - 32 teeth/in. pitch

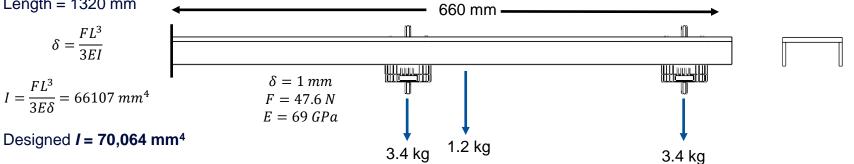
$$G = \frac{N_2}{N_1} = \frac{144}{24} = 6$$

Movement Subsystem Design Analysis

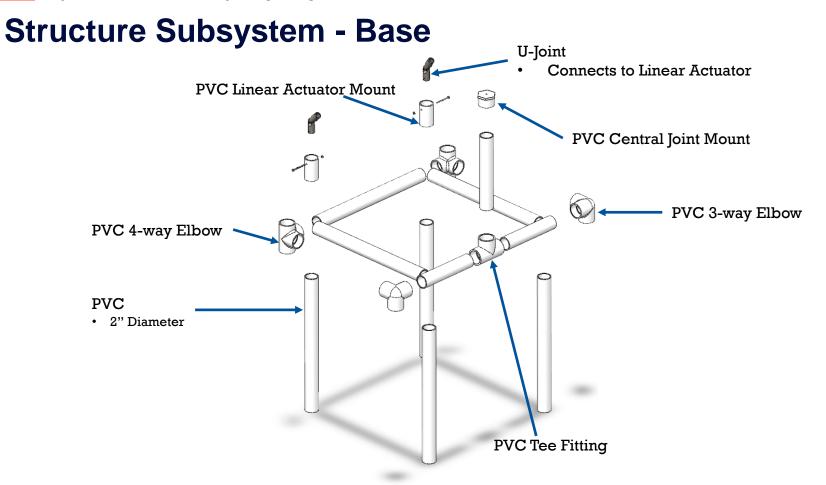
Motor Mount ٠

Known:

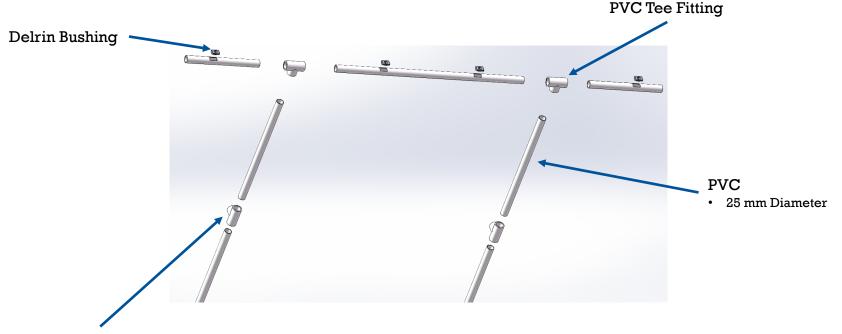

.


UF

- Mass of components •
- Length = 1320 mm٠
- Load = 47.6 N at end ٠


Maximum deflection 1 mm

- Mass of components ٠
- Length = 1320 mm•



Department of Mechanical & Aerospace Engineering

Department of Mechanical & Aerospace Engineering

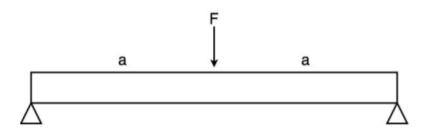
Structure Subsystem – Upper Crossbar

PVC Linear Actuator Mount

Structure Subsystem Design Analysis

Bending stress on PVC at U-joint:

- 273.5 load from mirror assembly (27.88 kg)
- Length = 284.4 mm
- Inner radius = 25.995 mm
- Outer radius = 30.165 mm of PVC


$$M = \frac{1}{2}Fa = 77.8 Nm$$

$$y = R_o = 0.030 m$$

$$I = \frac{\pi}{4} (R_o^4 - R_i^4) = 2.92 * 10^{-7} m^4$$

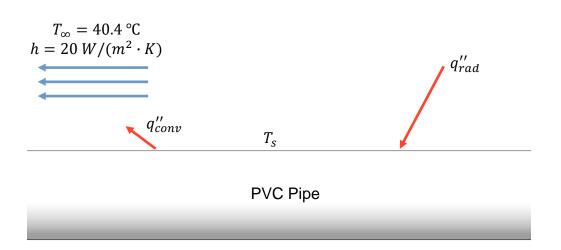
$$\sigma_b = \frac{My}{l} = 8.05 MPa$$

- Yield strength of PVC = 55.2 Mpa
- Beam factor of safety = 6.86

Department of Mechanical & Aerospace Engineering

Structure Subsystem Design Analysis

Radiative heat flux on PVC


- $q^{\prime\prime} = q^{\prime\prime}_{conv} + q^{\prime\prime}_{rad} = h(T_s T_\infty) + \varepsilon \sigma T_s^4 \alpha G$
- $q_{rad}'' = 1367 Wm^2$
- $G = 1367 \frac{W}{m^2}$
- $\sigma = 5.67 * 10^{-8} Wm^{-2}K^{-4}$

For white acrylic paint:

- $\varepsilon = 0.9$
- $\alpha = 0.26$

PVC operating temperature = 60 °C

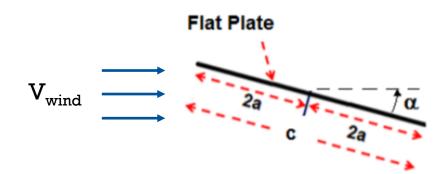
• $T_s = 87^{\circ}C$

Department of Mechanical & Aerospace Engineering

Structure Subsystem Design Analysis

Wind force lifting the assembly up

Assumptions:


- Max angle of attack in safe position = 0.5°
- Mirrors modeled as flat plates
- Max possible wind speed = 40.2 m/s
- Lift coefficient, $C_L = 2\pi * 0.0087$
- Density of air = $1.225 \frac{kg}{m^3}$
- Lift area = 1 m²

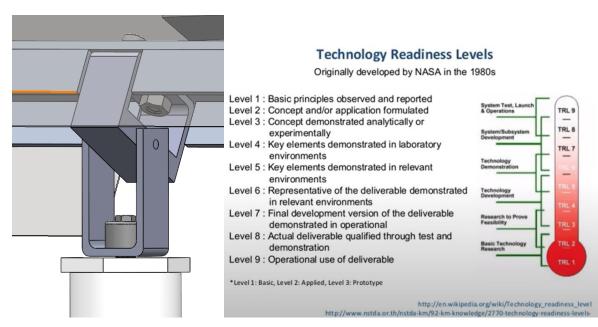
Lift force calculation:

•
$$F_L = C_L \left(\frac{1}{2}\rho V^2\right) A = 54.11 \,\mathrm{N}$$

Module weight:

• Mass = 27.88 kg, weight = 273.5 N

Cost Table Summary


UF

Category	Prototype Price	Mass Production Price
OTS Parts	\$248.78	\$143.09
Modified OTS Parts	\$2.46	\$1.85
Raw Materials	\$67.88	\$13.94
Manufacturing Labor	\$41.45	\$25.11
Assembly Labor	\$12.36	\$12.36
Energy Consumption	\$0.16	\$0.16
Total	\$373.08	\$196.50

Technology Readiness Level (TRL)

- Critical components
 - Custom U-joint
- At level 3 currently
 - Concept demonstrated analytically

Department of Mechanical & Aerospace Engineering

Mirror Surface Cleaning

- At least 95% reflectance must be recovered
- A research study found that a high pressure (>500 PSI) stream of water recovered 95% reflectance.

Power cleaning of heliostat mirrors Image courtesy of Arpsolar

Summary

PVC frame

- Low cost
- Easy to manufacture

Low number of motors per mirror

4 stepper motors, 2 linear actuators

High Precision Mirror Control

- Two modes of azimuth rotation
- Stepper motor reduction increases accuracy

Conclusion

- Low cost
- Easy to manufacture
- Q&A

