
Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

SOLR Self Orienting Light Reflector

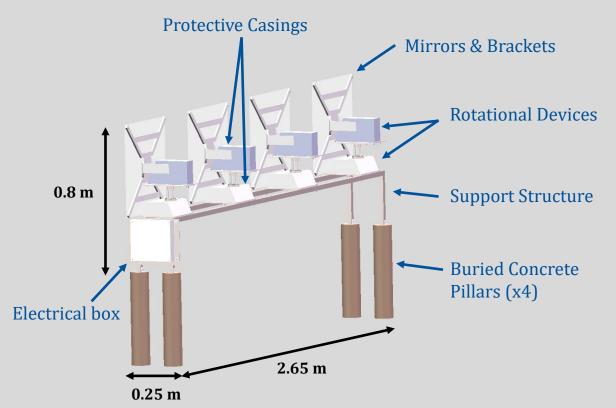
Section 27096, Group 11

Jose Camacho, Kevin Cochran, Connor Duffy, Matthew Liffrig, Dante Marra, Connor Murray, Alden Zamorano

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

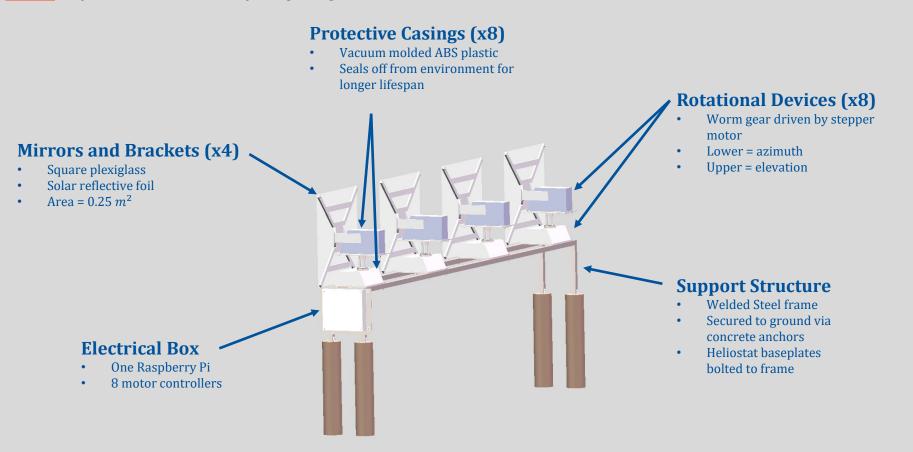
Team Motivation

Our team's passion, greatest skills, and financial drive guided us towards a design:

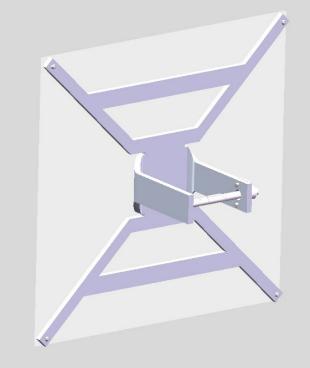


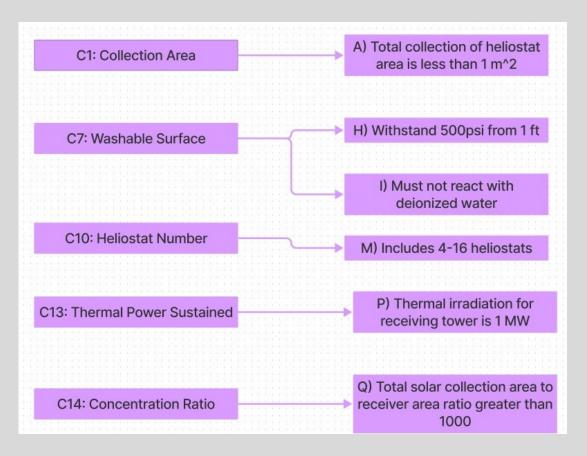
Overview of SOLR

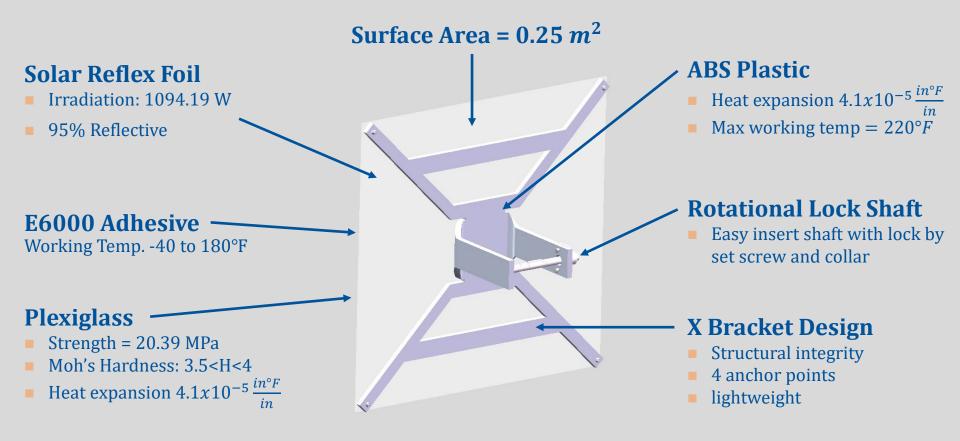
- Elevated, strong, secure, steel frame
- Four independent, identical heliostats


UF

- Single, all-encompassing electrical box
- Precise elevation and azimuth tracking
- Ease of modularity (repairs/replacements)


UF


Department of Mechanical & Aerospace Engineering


Mirror

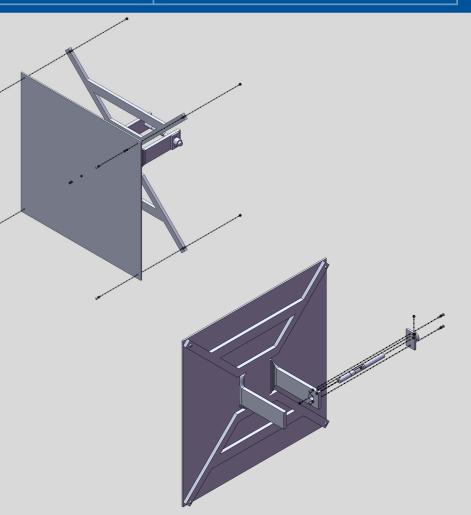
UF

Thermal Irradiance on the central tower from 1 module

 $P = \phi A \eta_f(\eta_p)^2 = \left(\frac{1360.8 W}{m^2}\right) (1 m^2) (0.95) (0.92)^2$

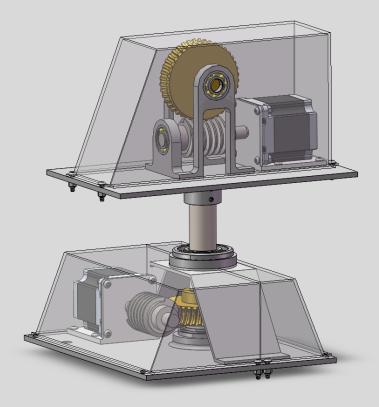
P = 1094.19 W

Strength using fracture toughness

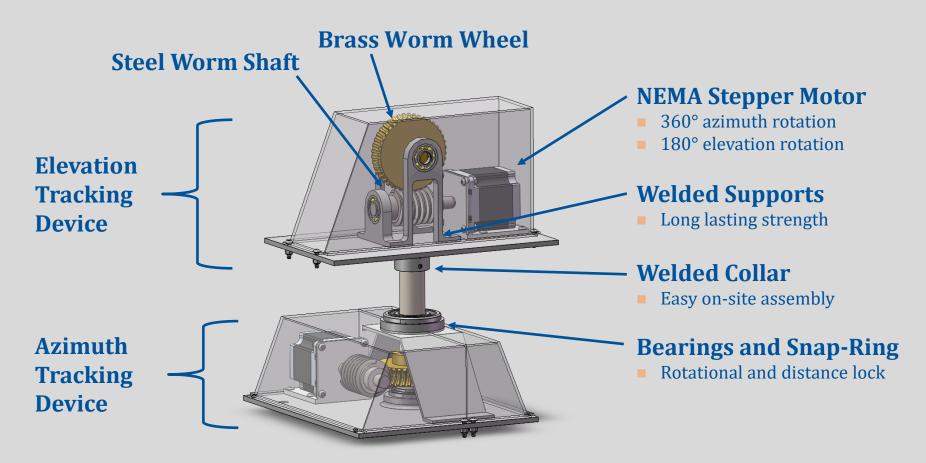

$$\sigma = \frac{K_{IC}}{\beta \sqrt{\pi a}} = \frac{1.15 \text{ MPa}\sqrt{m}}{1.5\sqrt{\pi 450 \text{ nm}}}$$
$$\sigma = 20.39 \text{ MPa}$$

Brinell Hardness of acrylic: Between 3.5 and 4

Weight of Acrylic

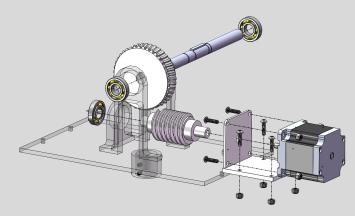

UF

$$W = \rho Vg = (1180 \frac{kg}{m^3})(0.25 m^2 * 0.004 m)(9.81 \frac{m}{s^2})$$
$$W = 11.58 N$$



Rotational Device

		-
C2: Optical Loss Mitigation	B) Optical losses must no exceed 40% (0.5 deg.)	t
	choose tore (ore dog)	
C3: Reflection Geometry	C) Must be able to redired	
	light to a 100m tall tower	
C4: Cost	D) Cost below \$100/m^2	
	a second s	
	F) Azimuth tracking of grea	ter
	than 150 degrees	
C6: Solar Tracking	than 100 degrees	
Co. Solar Hacking		-
	G) Elevation tracking of great	ate
	than 90 degrees beginning	
	10 degrees	
	K) Must withstand	
	temperatures from 120 to -	30
	degrees Fahrenheit	
C9: Deployment Location		
	L) Must withstand 60m	pn
	wind	
C12: Parts Cost	O) Custom parts cheaper	DE
CT2: Parts Cost	equal value to OTS parts	
	equal value to 013 parts	
	R) Driving mechanisms	
C15: Innovative Features	 composed of cheap electric 	cal
o to minorative reatines	gear motor	
	gear motor	
C19: Motor Use	V) Motors must connect t 110-120V grid	0



Tracking Accuracy of Rotational Drive with 1/4th Micro-stepping

$$Motor Resolution = \frac{200 \frac{steps}{rev}}{1/4 \frac{microsteps}{step}} = 800 \frac{steps}{rev}$$

Output Resolution = Motor Resolution * Worm Drive Ratio

 $\begin{aligned} \textit{Output Resolution} &= 800 \frac{\textit{steps}}{\textit{rev}} * \left(\frac{40}{1}\right) = 32000 \frac{\textit{steps}}{\textit{rev}} \\ \\ \textit{Tracking Accuracy} &= \frac{360 \frac{\textit{degrees}}{\textit{rev}}}{32000 \frac{\textit{steps}}{\textit{rev}}} \end{aligned}$

Efficiency of Worm Gear Drive

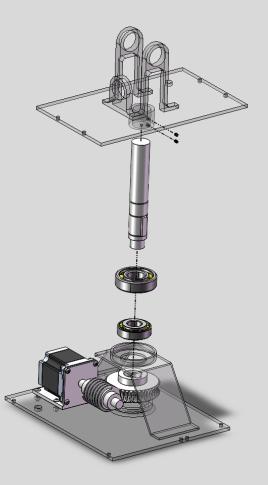
$$\eta = \frac{W^{t}(without \ friction)}{W^{t}(with \ friction)}$$

$$\eta = \frac{\cos\phi\sin\lambda}{f\cos\lambda + \cos\phi\sin\lambda} * 100$$

$$= \frac{\cos14.5^{\circ}\sin17.1^{\circ}}{0.1\cos17.1^{\circ} + \cos14.5^{\circ}\sin17.1^{\circ}} * 100$$

$$\eta = 75\%$$

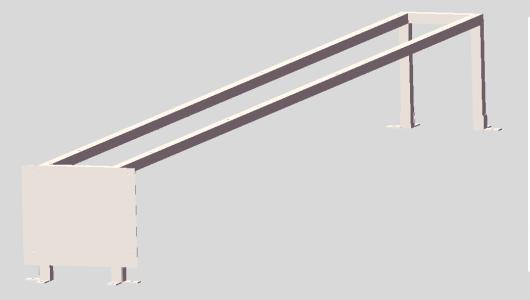
Worm Gear Design Factor of Safety

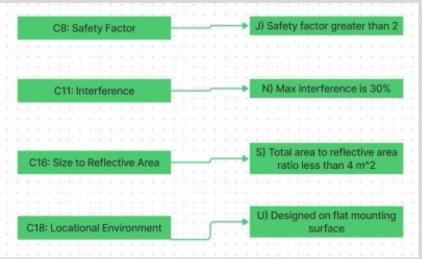

$$\sigma_{allow} = \frac{W^t}{F(d/N)Y}$$

$$\sigma_{allow} = \frac{0.2805}{(0.0018)\left(\frac{72.2}{40}\right)(0.336)}$$

$$\sigma_{allow} = 256.94MPa$$

$$\eta_d = \frac{350MPa}{256.94MPa}$$


$$\eta_d = 1.36$$



UF Herbert Wertheim College of Engineering

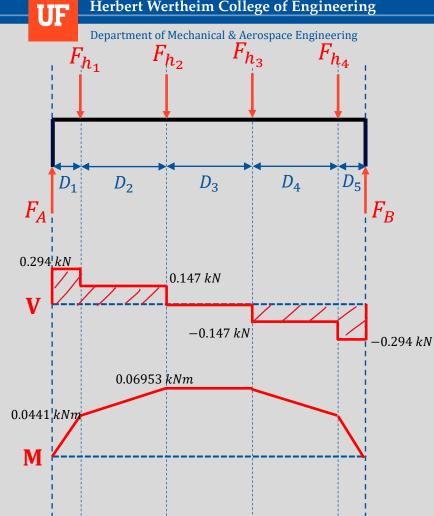
Department of Mechanical & Aerospace Engineering

Modular Support Structure

Department of Mechanical & Aerospace Engineering

Welded Steel Frame

- Moderate cost
- High strength
- Ease of manufacture
- Ease of on-site assembly


Concrete Wedge Anchors

- Ease of on-site assembly
- Secure anchoring under loads

Selectrical Box Mount

- Easy access for maintenance
- Low cost
- Secures electrical box and components

Each heliostat module is approximately 33 lbs.

$$F_{h_1} = F_{h_2} = F_{h_3} = F_{h_4} = 33 \ lbs \sim .147 \ kN$$

Summing the forces and solving for the reaction forces yields,

$$\Sigma F_y = 0 = F_A - F_{h_1} - F_{h_2} - F_{h_3} - F_{h_4} + F_B$$

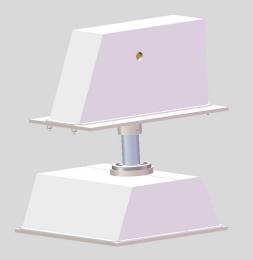
$$F_A = F_B = 0.294 \ kN$$

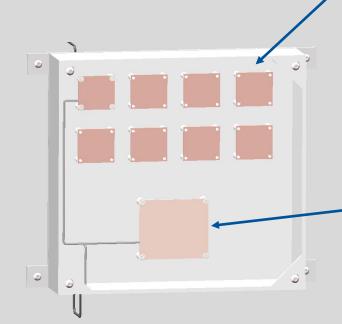
Therefore, the maximum shear force experienced is approximately 0.3 kN.

$$D_1 = D_5 = 0.15 m \& D_2 = D_3 = D_4 = 0.79$$

Normal stress, $\sigma_A = \frac{My}{I}$

 $M = 0.07 \, kNm$


The resulting stress on the frame is <u>60 MPa</u>.


60 *MPa* << 80 *GPa*

Electronics

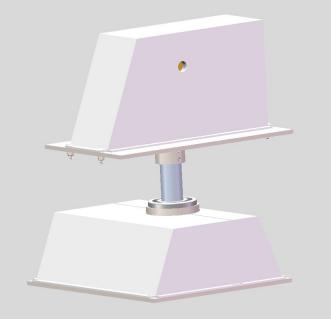
UF

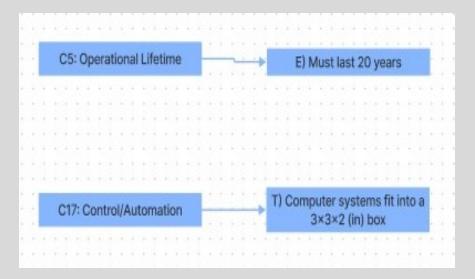
Limit Switches for motor location

Motor Drivers (x8)

- ULN2003 stepper motor driver
- Built in controller
- Converts pulse signals to motor motion to achieve precise positioning

Espressif ESP8266

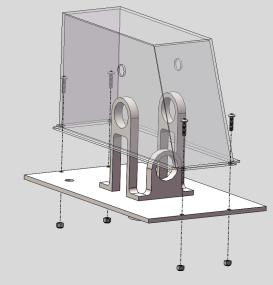

- Cost effective
- 2.4 GHz WiFi
- Bluetooth 4.3
- 5V DC power

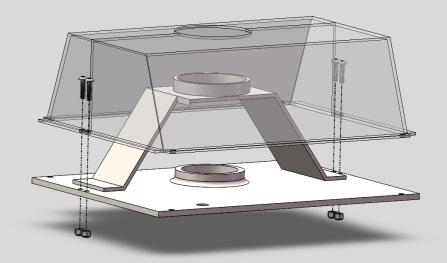

Herbert Wertheim College of Engineering

UF

Department of Mechanical & Aerospace Engineering

Protective Casing


Angled casings


- ABS plastic
- Max working temp = $220^{\circ}F$
- UV resistant pigment
- 35+ year lifetime

Standard bolt fastening M4 x 0.7 mm

Top casing slides over top and has holes for the mirror bracket to mount to

Bottom casing splits in half for easy access to the motor and gear systems

Herbert Wertheim College of Engineering

UF

Department of Mechanical & Aerospace Engineering

Heat Transfer Calculations for motors

- The maximum surrounding temperature to ensure the motor remains functional is 212°F
- The hottest recorded temperature ever in the United States was recorded to be 134°F

$$-q_s = h(T - T_0)$$

-q_s = 0.175(212°F - 134°F)
-q_s = 13.65 W/m²

$$q_s = hA(\Delta T)$$

-13.65 W/m² = (0.175)(0.0431 m²)(ΔT)
 $\Delta T = 18.11 \text{ °F}$

The change in temperature inside the protective structure would meet the motor standards

UF Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

High Wind Safety Mode

- Holding Torque
 - $H_T = MotorH_T * G_R = 1.26 Nm * 40 = 50.4 Nm$
- Lift on flat plate @ 90 mph
 - $C_L = 2\pi \sin \alpha = 2\pi \sin 12 = 1.31$
 - $\bullet F_D = \frac{1}{2}\rho v^2 C_D A$

•
$$T = d * F_D = 0.125m * \frac{1}{2} * \frac{1.225kg}{m^3} * \left(\frac{40.23m}{s}\right)^2 * 1.31 * 0.25m^2 = 40.47 Nm^2$$

40.47 *Nm* < 50.4 Nm

Cost of SOLR

Manufacturing Labor							
Subsystem	Discription	Cost	Quantity	Tot	al		
Mirror	Making Mirror	\$ 12.00	0.02	\$	0.20		
Mirror	Coating the Mirror	\$ 12.00	0.04	\$	0.48		
Mirror	Making Bracket	\$ 12.00	0.02	\$	0.24		
Rotational Device	Cutting Stock	\$ 12.00	0.1	\$	1.20		
Rotational Device	Modifiying Gears	\$ 12.00	0.1	\$	1.20		
Rotational Device	Making Platforms	\$ 12.00	0.02	\$	0.24		
Rotational Device	Printing Motor Mount	\$ 12.00	0.07	\$	0.80		
Protective Structure	Vacume Cover	\$ 12.00	0.17	\$	2.00		
Module Support Structure	Welding Frame	\$ 20.00	0.25	\$	5.00		
Total					11.36		

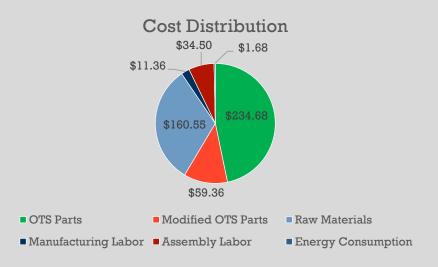
Assembly Labor							
Subsystem	Discription	Cost	Quantity		Cost Quantity		al
Mirror	Attach to Bracket	\$ 15.00	0.2	\$	3.00		
Rotational Device	Assemble	\$ 15.00	1	\$	15.00		
Protective Structure	Bolts	\$ 15.00	0.1	\$	1.50		
Module Support Structure	Attach Heilostats, set frame	\$ 15.00	1	\$	15.00		
Total					34.50		

Energy Consumption										
Subsystem	Discription	Cos	Cost Quantity		Cost Quantity To		Cost Quantity Tot		/ Total	
Fuel Charge		\$	0.04	2.5	\$	0.10				
Non-Fuel Charge		\$	0.02	5	\$	0.08				
Demand Charge		\$	5.00	0.3	\$	1.50				
Total					\$	1.68				

Manufacturing Labor Assembly Labor

OTS Parts

Energy Consumption



Cost of SOLR (cont.)

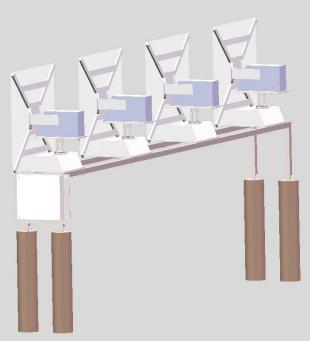
OTS Parts						
Subsystem	Discription	Cost	ost Quantity		tal	
Rotational Device	Motors	\$ 14.24	8	\$	113.92	
Rotational Device	Spur Gear	\$ 4.78	8	\$	38.24	
Rotational Device	Bearings	\$ 1.39	16	\$	22.24	
Rotational Device	Rasberry Pi	\$ 25.00	1	\$	25.00	
Rotational Device	Motor Driver	\$ 16.08	1	\$	16.08	
All	Nuts and Bolts	\$ 0.05	300	\$	15.00	
Rotational Device	Snap Rings	\$ 0.15	28	\$	4.20	
Total					234.68	

Raw Materials						
Subsystem	Discription	Co	st	Quantity	Tot	al
Mirror	ABS Plastic	\$	5.21	4	\$	20.84
Mirror	Mirror Bracket	\$	4.21	4	\$	16.84
Rotational Device	Round Stock	\$	3.30	4	\$	13.20
Rotational Device	Motor Platforms (steel)	\$	4.68	8	\$	37.44
Rotational Device	3-D Filiment	\$	31.49	0.2	\$	6.30
Protective Structure	ABS Plastic	\$	2.13	8	\$	17.04
Protective Structure	PVC for Casing	\$	2.40	1	\$	2.40
Module Support Structure	Steel Stock	\$	1.65	23	\$	37.95
Module Support Structure	Weld Stick	\$	0.002	52	\$	0.10
Module Support Structure	Concrete	\$	4.22	2	\$	8.44
Total					\$ 160.55	

Modified OTS Parts							
Subsystem	Discription	Cost	Cost Quantity Total		al		
Rotational Device	Worm Gear	\$ 7.42	8	\$	59.36		
Total				\$	59.36		

UF

Department of Mechanical & Aerospace Engineering


Summary of design

Modularity

- Ease of manufacture
- Ease of assembly
- Ease of access to parts for repair/replacement
- 4 identical heliostats on each module

Zero interference

 Heliostats in line, with same rotation

Lifetime (>20 years)

- Durable parts
- Safety modes
 - High wind
 - Electrical/mechanical failure

Quick Assembly

- Same screw heads used throughout
- Screws are easily accessed
- Limited on-site equipment necessary

Questions?