The Hive-Stat

Small-Scale Modular Tracking Heliostat

Group 13

Jake Anderer, Charles Datko, Kevin Diaz, Erika Joa, Joseph Miller, Akshay Ramakrishnan, Dari Samson

Design Problem

Herbert Wertheim College of Engineering

Herbert Wertheim College of Engineering

Inspiration from Nature

Ease of Assembly- Straightforward assembly for a faster setup time

Optimized Field Placement- The design is optimized to deliver efficiency in a multitude of positions

Ease of Assembly

Optimized Field Placement

Cost Reduction

Cost Reduction- Cost reduced by using more common materials and off the shelf parts

Department of Mechanical \& Aerospace Engineering

Reflective Surface

- Hexagonal compact shape allows close tessellation of heliostats
- Shading effects eliminated by spacing heliostats close together so shadows do not reach reflective surface

Reflective Surface Cont.

- Thermal Input Power, $\mathrm{N}=$ number of heliostats per module

$$
T I P=500 \cdot A_{\text {helio }} \cdot N=500 \cdot 0.1 \mathrm{~m}^{2} \cdot 6=300 \mathrm{~W}
$$

- Solar Concentration Ratio, assuming solar irradiance of $1000 \mathrm{~W} / \mathrm{m}^{2}$ and a collector area around the size of one heliostat

$$
S C R=\frac{2000}{N}=\frac{2000}{6}=333.33 \text { Suns }
$$

Reflective Surface Cont.

$$
\begin{aligned}
& u(x, y)=\frac{P}{64 D a}\left(x^{3}-x^{2} a-3 x y^{2}-y^{2} a+\frac{4}{27} a^{3}\right)\left(\frac{4}{9} a^{2}-x^{2}-y^{2}\right) \\
& D=\frac{E t^{3}}{12\left(1-v^{2}\right)} \quad a=\frac{\sqrt{3}}{2} l \\
& u_{\max }=u(0,0)=\frac{P l^{4}\left(1-v^{2}\right)}{144 E t^{3}}=\frac{5.75 \times 0.48^{4}\left(1-0.22^{2}\right)}{144 \times 0.070 \times 0.002^{3}}=7.5 \mathrm{~mm}
\end{aligned}
$$

Reflective Surface Cont.

$$
\begin{aligned}
& \alpha Q_{\text {sun }}-\varepsilon \sigma\left(T^{4}-T_{s k y}^{4}\right)-\mathrm{h}\left(T-T_{\text {air }}\right)=M C_{p} \frac{d T}{d t} \\
& \alpha=\frac{1}{Q_{\text {sun }}}\left[M C_{p} \frac{d T}{d t}+\varepsilon \sigma\left(T^{4}-T_{s k y}^{4}\right)\right] \\
& Q_{\text {sun }} \alpha=\varepsilon \sigma\left(T^{4}-T_{s k y}^{4}\right)-\mathrm{h}\left(T-T_{\text {air }}\right)
\end{aligned}
$$

$7.62\left[\frac{k W}{m^{2}}\right] \times 0.09=0.03 \times\left(5.67 \times 10^{-8}\right)\left[\frac{W}{m^{2} K^{4}}\right] \times\left(T^{4}-300^{4}\right)[K]+2\left[\frac{W}{m^{2} K}\right] \times(T-313.15)[K]$

$$
T=285.49^{\circ} \mathrm{C}
$$

Structure

$\mathrm{q}=1 / 2 \rho \mathrm{v}^{2}$

$$
\begin{aligned}
& \mathrm{v}=12.38 \mathrm{~m} / \mathrm{s} \\
& \rho=1.225 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{q}=93.874 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

$F=q A$

$$
\begin{aligned}
& \mathrm{A}=0.6 \mathrm{~m}^{\wedge} 2 \\
& \mathrm{q}=93.874 \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{~F}=56.325 \mathrm{~N}
\end{aligned}
$$

M max $=F r$
$\mathrm{F}=56.325 \mathrm{~N}$
$\mathrm{r}=609.6 \mathrm{~mm}$
$\mathrm{M}_{\text {max }}=34.335 \mathrm{~N}-\mathrm{M}$

$$
\begin{array}{ll}
I=\left(a_{1}{ }^{4} / 12\right) & a_{1}=13.54 \mathrm{in}^{2} \\
& I=2,800.872 \mathrm{in}^{4}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{Mmax}=34.335 \mathrm{~N}-\mathrm{M} \\
& \mathrm{y}=6.77 \mathrm{in}^{2} \\
& \mathrm{I}=2,800.872 \mathrm{in}^{4} \\
& \sigma_{\max }=82.99 \mathrm{kPa}
\end{aligned}
$$

Herbert Wertheim College of Engineering

Structure Cont.

Item	\quad Weicht
Mirroor + mirror body	$16 \mathrm{lbs} \quad 4.28 \mathrm{lbs}$
Hinge + pole + shaft	

Using Shigley's $8^{\text {th }}$ Ed. Shaft Bending Stress Eq. 7.3, assuming a well-rounded shaft for stress concentration:

$$
\sigma=K_{p} \frac{32 M_{a}}{\pi d^{3}}=1.7 \frac{32(2 * 10 \mathrm{lbs} * 2 ")}{\pi * 1^{3}}=1732 p s i
$$

Assuming a shear stress for 6061 aluminum as 30000 psi and a fatigue strength of 14000 psi for 500 million cycles, the factor of safety for near infinite life is about 8 and for peak loads about 17 .

Controls Hardware cont.

-Bidirectional control for two brushed DC motor (DC 4V to 16V).
-Control one unipolar/bipolar stepper motor. -Maximum Motor Current: 3A continuous per channel, 5A peak.
-Buck-boost regulator to produce 5 V output (200mA max).

Microcontroller	ATmega328P
Operating Voltage	5 V
Input Voltage (recommended)	$7-12 \mathrm{~V}$
Input Voltage (limit)	$6-20 \mathrm{~V}$
Digital I/O Pins	14
PWM Digital I/O Pins	6
Analog Input Pins	6
DC Current per I/O Pin	20 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	32 KB
SRAM	2 KB
EEPROM	1 KB
Clock Speed	16 MHz

Controls Hardware cont.

PRODUCT PARAMETERS

- With a speed of $10 \mathrm{~mm} / \mathrm{s}$, it would take about 35 seconds for the actuator to fully extend
- The actuator is more than fast enough to track the Sun as it travels
- Max power draw of 36 W for the actuator; 12.8 V battery with 10 aH
- Allows for 2 hours of full load continuous operation and 9 hours of low load continuous operation with a 20\% reserve capacity

Actuation

- Angle control using two linear actuators
- Actuators each have two 2-axis joints for independent movement
- Reduced risk of damage to mirror in case of malfunction

Herbert Wertheim College of Engineering

Actuation Cont.

- Heliostats to be installed near Las Vegas, Nevada at $36.1699^{\circ} \mathrm{N}$
- Earth's tilt of 23.5° gives a range of solar angles of $36.1699 \pm 23.5^{\circ}=59.67^{\circ}$ to 12.67° from vertical in the South
- The Sun also moves 180° from East to West, but most energy is available when the Sun is high in the sky, making angles near the horizon less desirable to reach

Actuation Cont.

Assumption: Tower and heliostat field is North-South aligned with the tower in the South to minimize Sun-tower angle

Assumption: Heliostats are located between 50 and 100 meters from the tower

$$
\begin{aligned}
& \theta_{\min }=\tan ^{-1} \frac{100 m}{50 m}=63.43^{\circ} \text { above horizon }=26.57^{\circ} \text { from vertical } \\
& \theta_{\max }=\tan ^{-1} \frac{50 m}{50 m}=45^{\circ} \text { above horizon }=45^{\circ} \text { from vertical }
\end{aligned}
$$

Herbert Wertheim College of Engineering

Actuation Cont.

- Heliostat works by reflecting light, so the Law of Reflection is used
- Angle of Incidence = Angle of Reflection
- Heliostat normal bisects angle between Sun and tower

Actuation Cont.

- Maximum heliostat angle North-South from vertical

$$
\begin{aligned}
& \text { Max }=\max \left(\text { solar angle }-\frac{a b s(\text { Tower angle }- \text { solar angle })}{2}\right. \\
& =59.67-\frac{59.67-45}{2}=52.34^{\circ} \text { from vertical towards South }
\end{aligned}
$$

- Minimum heliostat angle North-South from vertical

$$
\begin{aligned}
& \text { Min }=\min \left(\frac{\text { abs }(\text { Tower angle }- \text { solar angle })}{2}+\text { solar angle }\right) \\
& =\frac{26.57-12.67}{2}+12.67=19.62^{\circ} \text { from vertical towards South }
\end{aligned}
$$

Actuation Cont.

- Maximum heliostat angle East-West from vertical
- Sun reaches fully West and fully East, 90° from tower in each direction

$$
\text { Min }=\operatorname{Max}=\frac{90+0}{2}=45^{\circ} \text { from vertical in both directions }
$$

Actuation Cont.

- North-South angle achieved by actuator mounted high on pillar, lowest angle needed is 0° for neutral position in storms
- East-West angle controlled by lower-mounted actuator for equal control in either direction
- Attached to plastic support by clips screwed onto connector

Herbert Wertheim College of Engineering

Ground mounting

Ground Mounting Cont.

Parallel Axis Theorem

$$
\begin{gathered}
I=4\left(\frac{\pi d^{4}}{64}+\frac{\pi d^{2}}{4} L^{2}\right) \\
I=4\left(\frac{\pi(0.032 m)^{4}}{64}+\frac{\pi(0.032 m)^{2}}{4} 0.1299^{2}\right)=0.209 \mathrm{~m}^{4}
\end{gathered}
$$

Failure Mode

$$
\begin{gathered}
\sigma_{\max }=\frac{y M_{\max }}{I} \\
\sigma_{\max }=\frac{(0.1299 \mathrm{~m})(23.45 \mathrm{Nm})}{0.209 \mathrm{~m}^{4}}=14.57
\end{gathered}
$$

Cost Table Summary

Total Cost: \$373.75

*Retail pricing for prototyping is higher than for commercial/bulk quantities.

Herbert Wertheim College of Engineering

Why this design?

Conclusion

- The Hive-Stat meets the standards for a 1 MW thermal-solar power plant using the reflected light of the Sun off heliostat surfaces
- The Hive-Stat is a unique and innovative design that accomplishes this, while also addressing the need for a small-scale easily deployable heliostat

