UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

The Hive-Stat Small-Scale Modular Tracking Heliostat

Group 13 Jake Anderer, Charles Datko, Kevin Diaz, Erika Joa, Joseph Miller, Akshay Ramakrishnan, Dari Samson

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Design Problem

Total Mirror Area: 0.6 m²

Height at Neutral Position: 0.8 m

Inspiration from Nature

Ease of Assembly- Straightforward assembly for a faster setup time

Optimized Field Placement- The design

is optimized to deliver efficiency in a multitude of positions

Cost Reduction- Cost reduced by using more common materials and off the shelf parts

Reflective Surface

- Hexagonal compact shape allows close tessellation of heliostats
- Shading effects eliminated by spacing heliostats close together so shadows do not reach reflective surface

Reflective Surface Cont.

Thermal Input Power, N = number of heliostats per module

$$TIP = 500 \cdot A_{helio} \cdot N = 500 \cdot 0.1m^2 \cdot 6 = 300 W$$

 Solar Concentration Ratio, assuming solar irradiance of 1000W/m² and a collector area around the size of one heliostat

$$SCR = \frac{2000}{N} = \frac{2000}{6} = 333.33 \, Suns$$

а

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Reflective Surface Cont.

Reflective Surface Cont.

$$\alpha Q_{sun} - \varepsilon \sigma \left(T^4 - T_{sky}^4 \right) - h(T - T_{air}) = M C_p \frac{dT}{dt}$$
$$\alpha = \frac{1}{Q_{sun}} \left[M C_p \frac{dT}{dt} + \varepsilon \sigma (T^4 - T_{sky}^4) \right]$$
$$Q_{sun} \alpha = \varepsilon \sigma \left(T^4 - T_{sky}^4 \right) - h(T - T_{air})$$

$$7.62\left[\frac{kW}{m^2}\right] \times 0.09 = 0.03 \times (5.67 \times 10^{-8}) \left[\frac{W}{m^2 K^4}\right] \times (T^4 - 300^4)[K] + 2\left[\frac{W}{m^2 K}\right] \times (T - 313.15)[K]$$

$$T = 285.49^{\circ} C$$

UF

Department of Mechanical & Aerospace Engineering

Yield strength of wood (2.1mPa) > σ_{max}

Structure Cont.

UF

Item	Weight
Mirror + mirror body	16 lbs
Hinge + pole + shaft	4.28 lbs

Using Shigley's 8th Ed. Shaft Bending Stress Eq. 7.3, assuming a well-rounded shaft for stress concentration:

$$\sigma = K_p \frac{32M_a}{\pi d^3} = 1.7 \frac{32(2*10 \ lbs*2")}{\pi * 1^3} = 1732psi$$

Assuming a shear stress for 6061 aluminum as 30000psi and a fatigue strength of 14000psi for 500 million cycles, the factor of safety for near infinite life is about 8 and for peak loads about 17.

Controls Hardware cont.

UF

•Bidirectional control for two brushed DC motor (DC 4V to 16V).

•Control one unipolar/bipolar stepper motor. •Maximum Motor Current: 3A continuous per channel, 5A peak.

•Buck-boost regulator to produce 5V output (200mA max).

Microcontroller	ATmega328P
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limit)	6-20V
Digital I/O Pins	14
PWM Digital I/O Pins	6
Analog Input Pins	6
DC Current per I/O Pin	20 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	32 KB
SRAM	2 KB
EEPROM	1 KB
Clock Speed	16 MHz

Figure. 1 Arduino Uno

Controls Hardware cont.

- With a speed of 10 mm/s, it would take about 35 seconds for the actuator to fully extend
- The actuator is more than fast enough to track the Sun as it travels

- Max power draw of 36 W for the actuator; 12.8V battery with 10aH
- Allows for 2 hours of full load continuous operation and 9 hours of low load continuous operation with a 20% reserve capacity

Actuation

- Angle control using two linear actuators
- Actuators each have two 2-axis joints for independent movement
- Reduced risk of damage to mirror in case of malfunction

Actuation Cont.

- Heliostats to be installed near Las Vegas, Nevada at 36.1699° N
- Earth's tilt of 23.5° gives a range of solar angles of 36.1699±23.5°= 59.67° to 12.67° from vertical in the South
- The Sun also moves 180° from East to West, but most energy is available when the Sun is high in the sky, making angles near the horizon less desirable to reach

Actuation Cont.

Assumption: Tower and heliostat field is North-South aligned with the tower in the South to minimize Sun-tower angle

Assumption: Heliostats are located between 50 and 100 meters from the tower

$$\theta_{min} = \tan^{-1} \frac{100m}{50m} = 63.43^{\circ} above horizon = 26.57^{\circ} from vertical$$

 $\theta_{max} = \tan^{-1} \frac{50m}{50m} = 45^{\circ} above horizon = 45^{\circ} from vertical$

Actuation Cont.

- Heliostat works by reflecting light, so the Law of Reflection is used
- Angle of Incidence = Angle of Reflection
- Heliostat normal bisects angle between Sun and tower

Actuation Cont.

Maximum heliostat angle North-South from vertical

$$Max = \max(solar \ angle - \frac{abs(Tower \ angle - solar \ angle)}{2}$$
$$= 59.67 - \frac{59.67 - 45}{2} = 52.34^{\circ} \text{ from vertical towards South}$$

Minimum heliostat angle North-South from vertical

$$Min = \min\left(\frac{abs(Tower \ angle - solar \ angle)}{2} + solar \ angle\right)$$
$$= \frac{26.57 - 12.67}{2} + 12.67 = 19.62^{\circ} \text{ from vertical towards South}$$

Actuation Cont.

Maximum heliostat angle East-West from vertical

Sun reaches fully West and fully East, 90° from tower in each direction

$$Min = Max = \frac{90+0}{2} = 45^{\circ}$$
 from vertical in both directions

Actuation Cont.

- North-South angle achieved by actuator mounted high on pillar, lowest angle needed is 0° for neutral position in storms
- East-West angle controlled by lower-mounted actuator for equal control in either direction
- Attached to plastic support by clips screwed onto connector

Ground mounting

Ground Mounting Cont.

Parallel Axis Theorem

$$I = 4\left(\frac{\pi d^4}{64} + \frac{\pi d^2}{4}L^2\right)$$
$$I = 4\left(\frac{\pi (0.032 \, m)^4}{64} + \frac{\pi (0.032 \, m)^2}{4}0.1299^2\right) = 0.209 \, m^4$$

Failure Mode

$$\sigma_{max} = \frac{yM_{max}}{I}$$
$$\sigma_{max} = \frac{(0.1299 \, m)(23.45 \, N \, m)}{0.209 \, m^4} = 14.57$$

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Cost Table Summary

UF

Total Cost: \$373.75

*Retail pricing for prototyping is higher than for commercial/bulk quantities.

Why this design?

Conclusion

- The Hive-Stat meets the standards for a 1 MW thermal-solar power plant using the reflected light of the Sun off heliostat surfaces
- The Hive-Stat is a unique and innovative design that accomplishes this, while also addressing the need for a small-scale easily deployable heliostat