Sunflower Heliostat

By Electric Sunflower Technologies
Section 13335, Group 2
K. Bauer, A. DeBoer, M. Itkin, B. Ortiz, J. Owens, J. Spillman, K. Todd

Our Motivations

- Mechanical manipulation and clever design
- Sleep
- Want to have a job!
- Satisfy customer needs

Sunflower Heliostat

Electronics

- Raspberry Pi 0W
- Sealed enclosures

Reflective Surface

- 176.41 W Thermal input
- 5,669 Modules to 1 MW
- 1,635 Suns of solar concentration

Structure

- "Step and Stagger"
- Concrete base
- Bronze bushings

Product Overview

Motion

Reflective Backing

- Pressure treated 2" x 4" beams
- Pliable adhesive
- Two axes of rotation
- High-torque gear trains
- 40 MPH max wind speed

Reflective Surface

Customer Needs Addressed: 1, 2, 4, 7, 16, 17, 18

- Four $0.0625 \mathrm{~m}^{2}$ silvered annealed glass mirrors per heliostat
- 3 mm thick
- Heliostat reflective surface mass = $\mathbf{1 . 8 6} \mathbf{~ k g}$
- Allows for easy handling and maintenance

Reflective Surface

Key Feature: Multi-Mirror

- Thermal input per module $=\mathbf{1 7 6 . 4 0 8} \mathbf{~ W}$
- 1 MW is obtained with $\mathbf{5 , 6 6 9}$ modules

$$
\begin{gathered}
Q=G_{b t} A \eta_{o p t} \\
\eta_{o p t}=0.5 \eta_{\text {ref }} \\
G_{b t}=G_{b n} \cos \theta_{i n c}
\end{gathered}
$$

- Concentration ratio of $\mathbf{1 , 6 3 5}$ suns

$$
\begin{aligned}
q_{\text {solar }} & =G_{\text {bn }} C_{\text {geo }} \eta_{\text {opt }} \\
C_{\text {geo }} & =\frac{A_{\text {heliostats }}}{A_{\text {receiver }}}
\end{aligned}
$$

Reflective Backing

Customer Needs Addressed: 1, 13, 14, 15

- 2" x 4" pressure-treated and kiln-dried cedar
- Max deflection $\mathbf{= 0 . 0 1 7} \mathbf{~ m m}$
- Deflection of a composite cantilever beam $\delta=\frac{F L^{3}}{3 E I}$
- Mass $=2.39 \mathrm{~kg}$
- FOS for bending $=\mathbf{4 . 6 6}$

Reflective Backing

Key Feature: Epoxy Adhesive

- Differences in thermal expansion causes internal stresses
- Epoxy is $\mathbf{6 . 3 1} \mathbf{~ m m}$ thick

$$
\begin{gathered}
\alpha_{\text {wood }}=30 \times 10^{-6 \circ} C^{-1} \\
\alpha_{\text {glass }}=9 \times 10^{-6 \circ} C^{-1} \\
\delta=\alpha \Delta T L \\
\delta_{\text {epoxy }}=\frac{\tau t}{G}
\end{gathered}
$$

Reflective Backing

Key Feature: Fastener Slots

- Max deformation due to swelling or shrinking $=0.19 \mathbf{~ m m}$

$$
\Delta W=W\left(\frac{S C}{100}\right) \frac{\Delta m c}{30}
$$

- Slots help deal with cracking near wood contact

Carl Eckelman: The Shrinking and Swelling of Wood and Its Effect on Furniture

Motion

Customer Needs Addressed: 4, 5, 7, 8, 13, 14, 15

- Tracks sun azimuthal and elevation angle
- High mechanical advantage = Low cost

Azimuth: $\theta_{1} \leq 330^{\circ}$ Elevation: $\theta_{2} \leq 65^{\circ}$

Motion

Torque Requirements: Worm Geartrain

- Friction

$$
\begin{aligned}
& T_{\text {bushing }}=\mu_{1} F_{\text {wind }} r \\
& T_{\text {slider }}=\mu_{2} W r \\
& T_{\text {friction }}=T_{\text {bushing }}+T_{\text {slider }}=3.85 \mathrm{lb} \cdot \text { in }
\end{aligned}
$$

- Wind

$$
T_{\text {wind }}=\frac{1}{2} \rho \mathrm{v}^{2} \mathrm{~A}_{2 \times 4} * \mathrm{R}=4.42 \mathrm{lb} \cdot \text { in }
$$

$$
T_{\text {applied }}=\left(\frac{30 \text { teeth }}{1 \text { teeth }}\right) * 2.5 \mathrm{lb} \cdot \text { in }=75 \mathrm{lb} \cdot \text { in }
$$

Motion

Torque Requirements: Initial Servo Design

- Operational wind speed limited by motor torque

$$
F_{l i f t}=\frac{1}{2} \rho v^{2} A \sin \theta C_{L}=20.7 \mathrm{lbs}
$$

$$
\begin{gathered}
C_{L}=\cos \alpha \sin \alpha\left(K_{p} \cos \alpha+\pi \sin \alpha\right)=1.68 \\
F_{\text {weight }}=9.37 \text { lbs } \\
\mathrm{T}_{\text {applied }} \geq T_{\text {wind }}+T_{\text {weight }}
\end{gathered}
$$

Motion

Key Feature: High Torque Gear Assembly

- 8:1 Gear ratio
- Reduced motor costs by 62\%
- Max wind speed $=48 \mathrm{MPH}$
$T_{\text {applied }}=\left(\frac{96 \text { teeth }}{12 \text { teeth }}\right) * 13 \mathrm{lb} \cdot$ in $=104 \mathrm{lb} \cdot$ in

Herbert Wertheim College of Engineering

Motion

Key Feature: Interchangeable Gears

- Injection molded Nylon
- Low speed = Low wear
- Identical parts for maintenance and cost

Motion

Key Feature: High Wind Safety Mode

- Triggered at $40 \mathbf{m p h}$ wind speed
- Staggered defense mode

$$
\begin{gathered}
W_{\text {module }}=15 \mathrm{lbs} \\
F_{\text {lift }}=\frac{1}{2} \rho v^{2} A \sin \theta C_{L} \\
V=\sqrt{\frac{2 W_{\text {module }}}{\rho A \sin \theta C_{L}}}=40 \mathrm{mph}
\end{gathered}
$$

Electronics

Customer Needs Addressed: 8, 9, 11, 12

- Uses a Raspberry Pi 0W for control
- Manages two heliostats
- Control of both axes

Electronics

Key Feature: Switches and Drivers

- Uses Omron Long Lever Switches
- IRF520 MOSFET as motor driver
- 2 A and 1 A fuses for overcurrent

Herbert Wertheim College of Engineering

Electronics

Key Feature: Power Diagram

Herbert Wertheim College of Engineering

Structure

Customer Needs Addressed: 2, 3, 6, 7, 10, 15

- $2.04 \mathrm{~m}^{2}$ footprint
- Durable and Cheap

Structure

Key Feature: Shading Removal

- Winter Solstice
- 33.5° Solar noon elevation

- Summer Solstice
- 77° Solar noon elevation

■ Collection Period: 8:15 AM- 5:15 PM

Herbert Wertheim College of Engineering

Structure

Key Feature: Furniture Sliders

- Low friction support

$$
\mu=0.20
$$

- Bronze bushings

$$
\mu=0.16
$$

Cleaning and Maintenance Procedure

- Apply wood sealer every 2 years
- Compressed air every 2 weeks
- Water pressure with detergent if necessary

From: Raising the Lifetime of Functional Materials for Concentrated Solar Power Technology

Cost Summary

Raw Materials ${ }^{1}$ (\$129.09)

- Structural components
- Reflective surface

OTS Parts ${ }^{1}$ (\$171.87)

- Electronics
- Actuators
- Hardware

Why Us?

- Fully operational
- Robust, reliable
- No cutting corners

Herbert Wertheim College of Engineering

Thank you!

- Questions?

NORTHROP GRUMMAN

 aurigo
UF
 Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Reflective Surface

Thermal Input Calculations

$$
\begin{gathered}
Q=G_{b t} A \eta_{\text {opt }} \\
\eta_{\text {opt }}=0.5 \eta_{r e f} \\
G_{b t}=G_{b n} \cos \theta_{i n c}
\end{gathered}
$$

Solar Radiation striking Earth's surface:

$$
\begin{gathered}
G_{b n}=G_{o n} \tau_{b} \\
G_{o n}=G_{s c}\left(1+0.033 \cos \left(\frac{360 n}{365}\right)\right) \\
\tau_{b}=a_{o}+a_{1} e^{\left(-\frac{k}{\cos \theta_{z}}\right)} \\
a_{0}=0.4237-0.00821(6-A)^{2} \\
a_{1}=0.5055-0.00595(6.5-A)^{2} \\
k=0.2711-0.01858(2.5-A)^{2}
\end{gathered}
$$

Angle of Incidence:

$$
\cos \left(2 \theta_{i n c}\right)=\bar{S} \cdot \bar{H}
$$

$$
\begin{aligned}
& \bar{S}=\cos \alpha_{s} \sin \gamma_{s} \hat{\imath}-\cos \alpha_{s} \cos \gamma_{s} \hat{\jmath}+\sin \alpha_{s} \hat{k} \\
& \bar{H}=\cos \alpha_{t} \sin \gamma_{t} \hat{\imath}-\cos \alpha_{t} \cos \gamma_{t} \hat{\jmath}+\sin \alpha_{t} \hat{k}
\end{aligned}
$$

The sun is assumed to be at solar noon during the winter solstice to replicate the worst day of the year for thermal collection.

Reflective Surface

Solar Concentration Calculation

$$
\begin{gathered}
Q=q_{\text {solar }} A_{\text {receiver }} \\
A_{\text {receiver }}=\frac{Q}{q_{\text {solar }}}=1 \mathrm{~m}^{2} \\
q_{\text {solar }}=G_{\text {bn }} C_{\text {geo }} \eta_{\text {opt }} \\
C_{\text {geo }}=\frac{A_{\text {heliostats }}}{A_{\text {receiver }}} \\
q_{\text {solar }}=1,635 \text { suns }
\end{gathered}
$$

Reflective Backing

Composite Cantilever Beam Deflection Calculation

$$
\begin{gathered}
F=\frac{E_{\text {glass }}}{E_{\text {cedar }}}=12.73 \\
I=\sum I_{i}+A_{i} d_{i}^{2} \\
\delta=\frac{F L^{3}}{3 E I} \\
\sigma_{\max }=F \frac{M c}{I} \\
F O S=\frac{\sigma_{\text {glassyield }}}{\sigma_{\max }}
\end{gathered}
$$

