UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Sunflower Heliostat By Electric Sunflower Technologies

Section 13335, Group 2 K. Bauer, A. DeBoer, M. Itkin, B. Ortiz, J. Owens, J. Spillman, K. Todd

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Our Motivations

- Mechanical manipulation and clever design
- Sleep
- Want to have a job!
 - Satisfy customer needs

UF Herb

Sunflower Heliostat

Electronics

- Raspberry Pi 0W
- Sealed enclosures
- Closed-loop control

Reflective Surface

- 176.41 W Thermal input
- 5,669 Modules to 1 MW
- 1,635 Suns of solar concentration

Structure

- "Step and Stagger"
- Concrete base
- Bronze bushings

Product Overview

Motion

UF

- Two axes of rotation
- High-torque gear trains
- 40 MPH max wind speed

Reflective Backing

- Pressure treated 2" x 4" beams
- Pliable adhesive

Reflective Surface

Customer Needs Addressed: 1, 2, 4, 7, 16, 17, 18

- Four 0.0625 m² silvered annealed glass mirrors per heliostat
 - **3 mm** thick
- Heliostat reflective surface mass = 1.86 kg
- Allows for easy handling and maintenance

Reflective Surface

Key Feature: Multi-Mirror

UF

- Thermal input per module = 176.408 W
 1 MW is obtained with 5,669 modules
 Q = G_{bt}Aη_{opt}
 η_{opt} = 0.5η_{ref}
 G_{bt} = G_{bn}cosθ_{inc}
- Concentration ratio of **1,635 suns**

$$q_{solar} = G_{bn}C_{geo}\eta_{opt}$$
$$C_{geo} = \frac{A_{heliostats}}{A_{receiver}}$$

Reflective Backing

Customer Needs Addressed: 1, 13, 14, 15

- 2" x 4" pressure-treated and kiln-dried cedar
- Max deflection = 0.017 mm
 - Deflection of a composite cantilever beam $\delta = \frac{FL^3}{3EI}$
- Mass = 2.39 kg
- FOS for bending = 4.66

Herbert Wertheim College of Engineering

Reflective Backing

- **Key Feature: Epoxy Adhesive**
- Differences in thermal expansion causes internal stresses
- Epoxy is **6.31 mm** thick

$$\alpha_{wood} = 30x10^{-6\circ}C^{-1}$$

$$\alpha_{glass} = 9x10^{-6\circ}C^{-1}$$

$$\delta = \alpha\Delta TL$$

$$\delta_{epoxy} = \frac{\tau t}{G}$$

Reflective Backing

Key Feature: Fastener Slots

Max deformation due to swelling or shrinking = 0.19 mm

$$\Delta W = W \left(\frac{SC}{100}\right) \frac{\Delta mc}{30}$$

 Slots help deal with cracking near wood contact

Carl Eckelman: The Shrinking and Swelling of Wood and Its Effect on Furniture

Customer Needs Addressed: 4, 5, 7, 8, 13, 14, 15

- Tracks sun azimuthal and elevation angle
- High mechanical advantage = Low cost

Azimuth: $\theta_1 \le 330^\circ$ Elevation: $\theta_2 \le 65^\circ$

Torque Requirements: Worm Geartrain

Friction

$$T_{bushing} = \mu_1 F_{wind} r$$

$$T_{slider} = \mu_2 W r$$

$$T_{friction} = T_{bushing} + T_{slider} = 3.85 \ lb \cdot in$$

• Wind

$$T_{wind} = \frac{1}{2}\rho v^2 A_{2x4} * R = 4.42 \text{ lb} \cdot in$$

Max Torque Required: 8.27 lb \cdot in

Torque Requirements: Initial Servo Design

Operational wind speed limited by motor torque

$$F_{lift} = \frac{1}{2}\rho v^{2}Asin\theta C_{L} = 20.7 \ lbs$$

$$C_{L} = cos\alpha sin\alpha (K_{p}cos\alpha + \pi sin\alpha) = 1.68$$

$$F_{weight} = 9.37 \ lbs$$

$$T_{applied} \ge T_{wind} + T_{weight}$$

Max Torque Required: 92.3 lb \cdot in

Key Feature: High Torque Gear Assembly

- 8:1 Gear ratio
- Reduced motor costs by 62%
- Max wind speed = 48 MPH

Motion Key Feature: Interchangeable Gears

- Injection molded Nylon
- Low speed = Low wear
- Identical parts for maintenance and cost

Motion Key Feature: High Wind Safety Mode

- Triggered at 40 mph wind speed
- Staggered defense mode

$$W_{module} = 15 \text{ lbs}$$

$$F_{lift} = \frac{1}{2}\rho v^2 A \sin\theta C_L$$

$$V = \sqrt{\frac{2W_{module}}{\rho A \sin\theta C_L}} = 40 \text{ mph}$$

Electronics

Customer Needs Addressed: 8, 9, 11, 12

- Uses a Raspberry Pi 0W for control
- Manages two heliostats
- Control of both axes

Electronics

- **Key Feature: Switches and Drivers**
- Uses Omron Long Lever Switches
- IRF520 MOSFET as motor driver
- 2A and 1A fuses for overcurrent

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Electronics

Key Feature: Power Diagram

Structure

Customer Needs Addressed: 2, 3, 6, 7, 10, 15

- 2.04 m^2 footprint
- Durable and Cheap

Structure

- Key Feature: Shading Removal
- Winter Solstice
 - 33.5° Solar noon elevation

- Summer Solstice
 - **77**° Solar noon elevation
 - Collection Period: 8:15 AM- 5:15 PM

Structure

- **Key Feature: Furniture Sliders**
- Low friction support $\mu = 0.20$
- Bronze bushings $\mu = 0.16$

Cleaning and Maintenance Procedure

- Apply wood sealer every 2 years
- Compressed air every 2 weeks
- Water pressure with detergent if necessary

From: Raising the Lifetime of Functional Materials for Concentrated Solar Power Technology

Cost Summary

Raw Materials¹ (\$129.09)

- Structural components
- Reflective surface

Manufacturing (\$65.89)

- Raw material manipulation
- Injection molding

Assembly (\$7.62)Handling time

OTS Parts¹ (\$171.87)

- Electronics
- Actuators
- Hardware

Why Us?

- Fully operational
 - Robust, reliable
- No cutting corners

Thank you!

Questions?

NORTHROP GRUMMAN

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Reflective Surface

Thermal Input Calculations

Solar Radiation striking Earth's surface:

$$G_{bn} = G_{on}\tau_b$$

$$G_{on} = G_{sc} \left(1 + 0.033 \cos\left(\frac{360n}{365}\right) \right)$$

$$\tau_b = a_o + a_1 e^{\left(-\frac{k}{\cos\theta_z}\right)}$$

$$a_0 = 0.4237 - 0.00821(6 - A)^2$$

$$a_1 = 0.5055 - 0.00595(6.5 - A)^2$$

$$k = 0.2711 - 0.01858(2.5 - A)^2$$

 $Q = G_{bt}A\eta_{opt}$ $\eta_{opt} = 0.5\eta_{ref}$ $G_{bt} = G_{bn}cos\theta_{inc}$

Angle of Incidence: $\cos(2\theta_{inc}) = \bar{S} \cdot \bar{H}$ $\bar{S} = \cos\alpha_s \sin\gamma_s \hat{i} - \cos\alpha_s \cos\gamma_s \hat{j} + \sin\alpha_s \hat{k}$ $\bar{H} = \cos\alpha_t \sin\gamma_t \hat{i} - \cos\alpha_t \cos\gamma_t \hat{j} + \sin\alpha_t \hat{k}$

The sun is assumed to be at solar noon during the winter solstice to replicate the worst day of the year for thermal collection. Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Reflective Surface

Solar Concentration Calculation

$$Q = q_{solar} A_{receiver}$$

$$A_{receiver} = \frac{Q}{q_{solar}} = 1m^2$$
$$q_{solar} = G_{bn}C_{geo}\eta_{opt}$$
$$C_{geo} = \frac{A_{heliostats}}{A_{receiver}}$$
$$q_{solar} = 1,635 \ suns$$

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

UF

Reflective Backing

Composite Cantilever Beam Deflection Calculation

$$F = \frac{E_{glass}}{E_{cedar}} = 12.73$$

$$I = \sum I_i + A_i d_i^2$$

$$\delta = \frac{FL^3}{3EI}$$

$$\sigma_{max} = F\frac{Mc}{I}$$

$$FOS = \frac{\sigma_{glassyield}}{\sigma_{max}}$$

