Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Dual-wing Heliostat

Section 13337, Group 8

Nathan Brett, Kateland Hutt, Karl Jusino-Ortiz, Trevor Perez, Joseph Rios, Samantha Scholl, Devon Yon

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Dual-wing Heliostat

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Dual-wing Heliostat Reflector Angled mirrors focus light at distance **Actuation** Tracks sun 350° along both axes Azimuth axis – DC Gear Motor *Altitude axis – Servo/Stepper* Hybrid Motor

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Dual-wing Heliostat Reflector Controls Angled mirrors focus light Module-specific microprocessor at distance allows optimization across solar field **Actuation** Tracks sun 350° along both axes Azimuth axis – DC Gear Motor Altitude axis – Servo/Stepper Hybrid Motor

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Product Motivations

- Efficiency
- Cost-effective
- Efficient Light/heat delivery
 - Control optimization
 - Angled reflectors to focus light
- Easily scaled-up

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Reflector

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Reflector

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Reflector

Department of Mechanical & Aerospace Engineering

1° angle toward center

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Mounting

<

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Mounting

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Mounting

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

		F1: (C1) Uses 4 heliostats
C1: Uses 4-16 heliostats	M1: 4-16 heliostats per module	F2: (C2) Installation cost will not exceed
C2: Installation costs to not exceed \$100/m ²	M2: Costs must be minimized	\$100/m ²
C4: Reflecting surface must be conventially washable	M3: Washable to maintain 97% reflectivity	F4: (C4) Snap fits on reflector mount for easy removal
C5: Operates under ambient weather conditions in Las Vegas	Reflector	F5: (C5) Operates under ambient weather conditions in Las Vegas
C6: 20-year operational lifetime	M5: Operational Litetime ≥ 20 years Subsystem	F6: (C6) 20-year operational lifetime
C7: Capitalizes on innovations enabled by small size	Mo: Reliability, minimize number of joints	F7: (C7) Uses less than 20 unique parts
C8: Delivers 1 MW power to central tower after losses	M10: Minimal number of parts M8: Delivered thermal input > 1 MW	F8: (C8) Reflectors angled inward for focusing effects
C9: Collection Area < 1 m ²	M9: Over 1 m ² reflector surface area	F9: (C9) Reflector surface area 1.26 m ²
C10: Concentration ratio > 1000 suns		F10: (C10) Reflectors of silver-backed glass

Department of Mechanical & Aerospace Engineering

Reflector angle calculations

$$\theta = 90^{\circ} - 2\theta_{ref}$$
$$\theta_{ref} = 180^{\circ} - 2\tan^{-1}\left(\frac{d_{rec}}{L}\right)$$
$$\theta_{ref} = f(d_{rec})$$
Results:

$$\frac{\text{Results:}}{\theta_{ref}(40 \text{ m}) = 1.21^{\circ}}$$

$$\theta_{ref}(60\ m)=0.81^\circ$$

UF Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Reflector snap fit

$\delta = e = \frac{FF}{3I}$	$\frac{H^3}{\Xi I}$	\Rightarrow	F =	$\frac{3Eewt^3}{12H^3}$
$\sigma =$	$\frac{Mc}{I} =$	$\frac{FHt}{2I} =$	$=\frac{3E\epsilon}{2H}$	$\frac{2t}{2}$
	$\sigma =$	13.3 M	IPa	

Width w out of page

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Reflector mount

$$F_{wind} = \frac{1}{2}\rho_{air}(2A)V^2$$
$$F_{wind} = 1037.4 N$$

$$\sigma = \frac{F_{wind}yc}{0.25\pi(r_o^4 + r_i^4)}$$
$$\sigma = 4.56 MPa < \sigma_{y_{PVC}} = 24 MPa$$

Department of Mechanical & Aerospace Engineering

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Actuation

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Altitude actuation

Closed-loop Stepper Servo Hybrid motor 2.7 V / 6.0 A 16.2 W delivered power 57 RPM 4.5 N·m torque

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Azimuth actuation

Worm Gear DC motor 12 V / 25.0 A 300 W delivered power 65 RPM 11 N·m torque

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

U:

Power delivered

GOAL: turn 94 N weight about 0.4 m lever-arm

 $\begin{array}{ccc} P = 16.2 \text{ W} & & 65\% \text{ efficiency} & P = 10.53 \text{ W} \\ T = 4.5 \text{ N·m} & & & & \\ \omega = 57 \text{ RPM} & & & & \\ (217 \text{ deg/s}) & & & \omega = 16 \text{ deg/s max} \end{array}$

GOAL: turn 80 kg structure with 0.3 m lever-arm

<i>P</i> = 300 W	60% efficiency	<i>P</i> = 195 W
<i>T</i> = 11 N·m		<i>T</i> = 235.44 N·m
ω = 65 RPM		ω = 47 deg/s max
(390 deg/s)		Ū

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

U;

Structural concerns

Bending Factor of Safety, $n = \frac{\sigma_{y,PVC}}{\sigma_b}$ $I = \frac{\pi}{64} (D^4 - d^4)$ $I = 8.32 \times 10^{-7} m^4$ $W_H = 94 N$ $x_m = 0.3 m$ $M = W_H x_m$

$$\sigma_b = \frac{My}{I}$$

$$n = \frac{2I}{W_H x_m D} \ \sigma_{y, PVC}$$

$$n = 9.44 \gg 1$$

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

U;

Structural concerns

Shearing Factor of Safety, $n = \frac{\sigma_{y,PVC}}{2\tau_{max}}$ $\tau_{max} = \frac{4V}{3A} \left(1 + \frac{Dd}{D^2 + d^2} \right)$ $V = W_H = 94 N$ $A = \frac{\pi}{4} (D^2 - d^2)$ $A = 3.77 \times 10^{-3} m^2$ $n = \frac{3A}{8V} \left(1 + \frac{Dd}{D^2 + d^2} \right)^{-1} \sigma_{y,PVC}$ $n = 240 \gg 1$ OD = 150 mm ID = 140 mm

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Thermal expansion

Pillar height: L = 1.5 m = 4.92 ft

Max. Variation: $\delta = 0.045$ in/ft

Max. Extension: $\delta L = 0.22$ in = 5.58 mm

$$E_{neoprene} = 4.2 MPa$$
 $A = 2 \times 10^{-5} m^2$
 $F = 100 N$ $L = 0.646 m$

Functional stretch of neoprene: $\delta = \frac{FL}{AE} = 76.9 \text{ mm}$

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Controls

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

	M2:	Costs must be minimized	k		1	F2: (C2) Installation cost will not exceed \$100/m ²
C2: Installation costs to not exceed \$100/m ²	M8: 1	Delivered thermal input > 1 MW				F8b: (C11) Control technique allows
C8: Delivers 1 MW power to central tower	M12: (Optical losses < 40%			11	optimization across entire field
C11: Mitigate optical losses	M13: 4	Azimuth angle range :180° bidirectionally		Controls		F11: (C11) Controls communicates with central tower
C12: Capable of tracking sun throughout day	 M14:	Altitude angle angle range : 90° bidirectionally		Subsystem		F12: (C12) Actuates 360° altitudinally and
C14: Sun tracking automated and computer-controlled	 M16:	Minimize overall tracking error		Subsystem	///	azimuthally.
C15: Furthest heliostats must account for light dispersion	M17.1	Minimize loop time (loos) treaking			11,	F14: (C14) Microchip processor uses local data to optimize entire field
C16: Redirects light to tower 100 m tall	WH 7: 1	error)			$\langle \rangle$	F15: (C15) Microchip offers very quick loop time
	M18:	Reflected light accuracy	r i			F16: (C16) Controller has lag time on order of milliseconds

UF Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Controls governing equations

Goal: Sun Tracking Error < 0.5 degrees

$$H_{E\Theta_i} = \frac{E(s)}{\Theta_i(s)} = \frac{1}{1 + C(s)P(s)} < 0.5$$

Goal: Sun Tracking Error < 0.5 degrees

$$H_{\mathrm{E}\Theta_r} = \frac{E(s)}{\Theta_r(s)} = \frac{1}{1 + C(s)P(s)} \le 10\%$$

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Thermal concerns

$$T_1$$
 R_{th} T_2

$$\dot{Q}_{max} = \frac{(T_{max} - T_{ambient})}{R_{th}}$$

$$R_{th} = \frac{L}{kA} \qquad \dot{Q}_{max} = P = (VI)_{max}$$

$$T_{max} = T_{ambient} + (VI)_{max}R_{th}$$

■ T_{max} = 56.35°C

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Base

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Soil force

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Cost analysis

Category	Prototype	Production
OTS parts	\$236.48	\$98.29
Modified OTS parts	\$34.19	\$8.23
Raw materials	\$48.20	\$10.23
Manufacturing labor	\$0.00	\$4.32
Assembly labor	\$0.00	\$5.66
Energy consumption	\$0.45	\$0.45
TOTAL	\$319.32	\$127.18

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Summary

UF

- **Cost-effective**
- Controls optimization

Scalability

system is lightweight and durable

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Conclusion

Kateland Hutt *k.hutt@ufl.edu*

Samantha Scholl samanthascholl@ufl.edu

Trevor Perez trevorperez@ufl.edu

Nathan Brett nbrett@ufl.edu

Karl Jusino-Ortiz Karljusino453@ufl.edu

Devon Yon dyon@ufl.edu

Joseph Rios josephrios@ufl.edu