

HelioSmart - - - Reimagined Solar Energy

Section 13337, Group 9

Adrien Arias, Jarett Cox, Olivia Dodge, Zariq George, Cristian Hooker, Abraham Sheikh, Noelle Turner

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

UF Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Meet the HelioSmart Team

Adrien Arias

Jarett Cox

Olivia Dodge

Zariq George

Cristian Hooker

Abraham Sheikh

Noelle Turner

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

What drives our mission?

Emphasis on efficiency and cost

- Use low-cost novel materials
- Assure 20-year lifetime
- Handle desert conditions in Las Vegas
- Reduce waste

UF

Best at creating practical, simple, effective designs

Passionate about reducing waste to create sustainability Economic ideal is maximizing profit per module and reducing cost per heliostat

- Designing a heliostat module that is meant to be a part of a plant
- Located in Las Vegas, Nevada
- Reducing cost while optimizing a small and compact design
- Smaller heliostats not currently utilized commercially

UF Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Unique Design Characteristics

Lazy-Susan Bearing

Separates rotation of top pole and structure

UF

Gear to Pole Connection

Ground Structure

Anchors module -underground -flanges prevent rotation -flat base prevents uplift

Herbert Wertheim College of Engineering

UF

Department of Mechanical & Aerospace Engineering

Reflective Surface Subsystem

Need	Metric	Solution
1	Number of innovations	0.25 m ² heliostat size
2	Total Collection area $\leq 1 \text{ m}^2$	4 square 0.25 m ² reflective surfaces
8	$Overall \ cost \leq \$100/m^2$	Low-cost plane mirrors
12	Withstand surface pressure up to 500 psi	Standard glass surface
14	Operational lifetime \geq 20 years	Glass surface with ABS frame
15	$35^{\circ} F \leq Operating temperature \leq 110^{\circ} F$	Silver-backed glass mirror
16	$oldsymbol{Q}_{in} \geq 1.05~\mathrm{MW}$	1627 modules to generate power
17	Solar concentration ratio $\geq 1000 \text{ kW/m}^2$	Compact module for higher ratio
18	Total Integrated Scatter $\leq 5\%$	Smooth reflective surface with 1.65% TIS

Reflective Surface Design

Reflective Surface Subsystem Analyses

Optical Efficiency:

 $\eta_{opt} = \rho * \eta_{cos} = (0.95)(0.77) = 0.71$

Solar Radiation Flux:

$$G_{bn} = \int_{0}^{30^{\circ}} (1000 \text{ W/m}^2) \cos(\theta) \, d\theta = 866 \text{ W/m}^2$$

- 0 $\leq \theta \leq 30^{\circ}$ on December 21st, 2020

Reflective Surface Subsystem Analyses

Useful Input Power (1 MW) $\dot{Q}_{use} = G_{bn} * \eta_{opt} * n * A_{module}$

Where n is the number of heliostat modules.

 $1 MW = (866 W/m^2)(0.71)n(1m^2) = 1627 modules$

$$\dot{Q}_{use} = \dot{Q}_{in} * \eta_{opt} \Rightarrow \dot{Q}_{in} = 1.41 \text{ MW}$$

Reflective Surface Subsystem Analyses

Solar Concentration Ratio

$$C_{geo} = \frac{\Sigma A_{heliostat\,modules}}{A_{receiver}} = \frac{n * A_{module}}{A_{receiver}} = \frac{1627(1 \text{ m}^2)}{1 \text{ m}^2} = 1627 \text{ suns}$$

Reflective Surface Subsystem Analyses

Lift force on a flat plate:

$$L = \frac{1}{2}\rho v^2 A C_L$$

Coefficient of lift:

$$C_L = 2\pi \sin \alpha$$

Actuation Subsystem

Need	Metric	Solution
4	Tracking Error $\leq 0.5^{\circ}$	Stepper motor drivers for precision
7	Receiver elevation $\leq 100 \text{ m}$	Range of motion >180 $^{\circ}$
8	Overall cost \leq \$100/m ²	Low-cost servo motors
11	Relative part cost \geq \$0	OTS parts preferred
14	Operational lifetime \geq 20 years	20+ years with maintenance

Actuation Subsystem Design Analyses

Required torque for azimuthal axis

Wind force on each mirror: $F_w = \frac{1}{2}\rho v^2 A = \frac{1}{2}\left(1.2\frac{\text{kg}}{\text{m}^2}\right)\left(4.47\frac{\text{m}}{\text{s}}\right)^2(0.25 \text{ m}^2) = 3.0 \text{ N}$

Torque due to the wind:

$$T = F_w * r = 2(3 \text{ N})(0.3545 \text{ m}) = 2.125 \text{ N} \cdot \text{m}$$

Actuation Subsystem Design Analyses

Motor Torque, $T_1 = 4.8 \text{ N} \cdot \text{m}$

Available torque due to gear ratio: $\frac{d_1}{d_2} = \frac{T_1}{T_2}$, where $d_1 = 8.89$ cm; $d_2 = 10.16$ cm

 $T_2 = 5.486 \,\mathrm{N} \cdot \mathrm{m}$

Actuation Subsystem Design Analyses

Required torque for tilt axis (against wind force)

Wind force for average wind speed: $F_w = 2.997N$

Torque: $T = F_w r = (2.997 \text{ N})(0.25 \text{ m}) = 0.749 \text{ N} \cdot \text{m}$

Torque produced by drive gears: $\frac{d_1}{d_2} = \frac{T_1}{T_2} \rightarrow \frac{3.175 \text{ cm}}{5.08 \text{ cm}} = \frac{1.96 \text{ N} \cdot \text{m}}{T_2} \rightarrow 3.14 \text{ N} \cdot \text{m}$

Actuation Subsystem Design Analyses

Required torque for tilt axis (against gravity)

Weight of two mirrors: 6.95 kg \rightarrow $F_g = 68.18$ N

Torque: $T = F_w r = (68.18 \text{ N})(0.0254 \text{ m}) = 1.73 \text{ N} \cdot \text{m}$

Torque produced by drive gears: $T_2 = 3.14 \text{ N} \cdot \text{m}$

Motors can support load

UF Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Structure Subsystem

Need	Metric	Solution
3	$4 \leq$ No. Heliostats ≤ 16	4 reflective surfaces
6	No shading from other heliostats	Minimum spacing =1.07 m
8	Overall cost \leq \$100/m ²	Hollow PVC tubing
10	Total area ratio ≈ 1	Proportional structure
13	Factor of safety = 2	Set standard for analysis
14	Operational lifetime \geq 20 years	20+ years with maintenance

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Subsystem Design Analyses

Structure - Bending stress on the poles

Typical wind force on each mirror:

$$F_w = \frac{1}{2}\rho v^2 A = \frac{1}{2}(1.2 \text{ kg/m}^2)(4.47 \text{ m/s})^2(0.25 \text{ m}^2) = 3.0 \text{ N}$$

Bending moment (per pole): $M = Fa = (6 \text{ N})(0.446 \text{ m}) = 2.67 \text{ N} \cdot \text{m}$

Structure Subsystem Design Analyses

Second moment of area:

$$I = \frac{\pi}{4}(r_2^4 - r_1^4) = \frac{\pi}{4}[(50.8 \text{ mm})^4 - (38.1 \text{ mm})^4] = 3.58 \times 10^{-6} \text{ m}^4$$

Bending stress: $\sigma = \frac{My}{I} = \frac{(2.67 \text{ N} \cdot \text{m})(0.0508 \text{ m})}{3.58 \times 10^{-6} \text{ m}^4} = 37.8 \text{ KPa}$

Maximum bending stress at 90 mph: $\sigma = 3.07$ MPa

Yield strength of PVC: 51.7 MPa

Structure Subsystem Design Analyses

Torsional shear stress due to wind

$$\tau = \frac{Tc}{J}$$
, where $J = \frac{\pi (d_o^4 - d_i^4)}{64}$

$$\tau = \frac{(2.127 \text{ N} \cdot \text{m})(0.0508 \text{ m})}{\frac{\pi (0.1016^4 - 0.0762^4)}{64} \text{m}^4} = 30.35 \text{ KPa}$$

Shear strength of PVC: 5 MPa

Structure Subsystem Design Analyses

Maximum deflection at wind speed of 90 mph

$$\delta = \frac{FL^3}{3EI}$$

$$\delta = \frac{(480 \text{ N})(0.4445 \text{m})^3}{3(2.8x10^9 \text{m})(3.58x10^{-6} \text{m}^4)} = 1.403 \text{ mm}$$

UF Herbert Wertheim College of Engineering

Controller Subsystem

Need	Metric	Solution
5	Minimum refresh rate = 13.9 Hz	l kHz refresh rate
8	Overall cost \leq \$100/m ²	Comparable Arduino UNO clone
9	Automated and computer controlled	WiFi capabilities
14	Operational lifetime \geq 20 years	20+ years with maintenance

Herbert Wertheim College of Engineering

UF

Department of Mechanical & Aerospace Engineering

Controller Design

Controller Subsystem Design Analyses

Controller & Driver – Heat Load (H) in Enclosure

$$h_{in} = \frac{P}{10} = \frac{194 \, W}{10} = 19.4 W$$

$$\Delta T = T_{max \ in \ Vegas} - T_{target} = 46 - 40 = 6^{\circ} \mathrm{C}.$$

This temperature difference correlates to a constant in W/ m^2 (*Table* 1).

H = $(SA_{box}*11.3 \text{ W/m}^2) + h_{in} = (0.055918 m^2 *11.3) + 0.14 = 0.771873 \text{ W}$

Temperature Difference in Deg F	BTU/hr./sq. ft.	Temperature Difference in Deg C	Watts/sq.m
5	1.5	3	5.2
10	3.3	6	11.3
15	5.1	9	17.6
20	7.1	12	24.4

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Controller Subsystem Design Analyses Max Enclosure Operating Temperature

 $\dot{q}_{control} = 19.4 W$ $\dot{q}_{sun} = 32.45 W$ $L = 0.00397 m^2$ $A = 0.0324 m^2$ $h = h_{wind} = 18.02 \frac{W}{m^2 K}$ $k = k_{cover} = 0.2 \frac{W}{m K}$ $T_{amb} = 320.37 K$ $T_{sky} = 318.10 K$

UF

$$\sum \dot{q} = \dot{q}_{sun} + \dot{q}_{control} - \dot{q}_{sky} - \dot{q}_{wind} = 0$$

$$\dot{q}_{sky} = \frac{T_{c,out} - T_{sky}}{R_{sky}}$$

$$\dot{q}_{wind} = \frac{T_{c,out} - T_{amb}}{R_{conv}}$$

$$T_{c,out} = 379.23 K$$

$$\dot{q}_{control} = \frac{T_{c,in} - T_{c,out}}{R_{cond}}$$

$$T_{c,in} = 391.06 K = 117.91^{\circ}C$$

Cost Breakdown

Expense	Prototype Cost	Mass Production Cost
OTS Parts	\$139.97	\$97.98
Raw Materials	\$52.35	\$36.65
Manufacturing	\$19.26	\$16.05
Assembly Labor	\$4.20	\$4.20
Energy Consumption	\$0.67	\$0.67
TOTAL:	\$216.45	\$155.55

Full-scale plant production is expected to result in a 30% cost savings for bulk purchases.

Summary

Thank you for your interest in HelioSmart

