UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

G.E.R.A.L.D.

Grounded Electronic Reliable Autonomous Laser Deflector Heliostat Design

Group 243D – *Traum*atized Kids

Cristian Hooker, Daniil Kardashov, Benjamin Lehmann, Brooke Ohlsson, Joshua Owens, Joseph Rios, Abraham Sheikh

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Mechanical & Aerospace Engineering

Meet the G.E.R.A.L.D. Team

Cristian Hooker

Daniil Kardashov

Benjamin Lehmann

Brooke Ohlsson

Joshua Owens

Joseph Rios

Abraham Sheikh

Department of Mechanical & Aerospace Engineering

The Design

UF

Mirror Subsystem

Actuation Subsystem

Electronics

Base Subsystem

Design Highlights & Key Features

- What makes us better than other designs
 - Compact design that integrates subsystems within each other
 - 3D Printed
 - Azimuth and elevation gears
 - Smaller motor
 - Protective Duct
 - Simple Design

Initial Design Changes from Fall Group 3 Design

- Internal elevation gear replaced with an external gear.
- Mirror mounting method switched to adhesive.
- Heliostat enclosure changed to use a protective duct.

UF

Department of Mechanical & Aerospace Engineering

Design Revisions

- **Elevation Motor –** size reduced due weight constraints
- Counterweights required for proper rotation
- H-bridge (4 redesigns)
- Labels overall organization
- Electrical box eliminated due to bulkiness
- **Front Face** redesigned for weight reduction

Department of Mechanical & Aerospace Engineering

H-Bridge Changes

Department of Mechanical & Aerospace Engineering

Final Iteration of H-Bridge

The initial design gear ratio, G:

 $G = \frac{\text{Driven Gear Teeth}}{\text{Driver Gear Teeth}} = \frac{48}{12} = 4$

Final design gear ratio:

$$G = \frac{128}{44} = 2.9$$

Initial design:

UF

accuracy =
$$\frac{1.8}{4} = 0.45^{\circ}$$

Final design:

accuracy = $\frac{1.8}{4 \text{ microsteps} \cdot 2.9} = 0.16^{\circ}$

UF

Department of Mechanical & Aerospace Engineering

Final Iteration of H-Bridge

Department of Mechanical & Aerospace Engineering

Fabrication of Parts

UF

Department of Mechanical & Aerospace Engineering

Mirror Subsystem 3D CAD Model

UF

Department of Mechanical & Aerospace Engineering

Actuation Subsystem 3D CAD Model

UF

Department of Mechanical & Aerospace Engineering

Base Subsystem 3D CAD Model

UF

Department of Mechanical & Aerospace Engineering

Elevation Motor Modifications

Elevation Motor- made smaller because of weight and power was overkill

The previous motor is rated at 0.45N-m and has a mass of 0.28 kg The new motor is rated at 0.16 N-m and has a mass of 0.041kg Assuming the weight acts at the center of mass: m = 0.25kg, l=0.0605m, g=9.81m/s² T = Fl = mlg = (0.25)(0.0605)(9.81) = 0.1484N - m Almost a 1/10 reduction in weight for a ~1/3 reduction in torque

Exploded CAD Views

UF Her

Department of Mechanical & Aerospace Engineering

Prototype Testing

Wind Test

Tracking Test

Wind Testing

UF

- 2 tests with the heliostat being subjected to the low and high settings of an industrial fan while in the least "safe" position. (15 full base plate revolutions each)
- 2 tests with the low and high settings of the leaf blower while in the "safest" position. (15 full base plate revolutions each)

Department of Mechanical & Aerospace Engineering

Laser Targeting Test

Kinematics

Target coordinates - P(a,b,c) Heliostat height - h

$$\alpha = \arctan\left(\frac{b}{1+c-h}\right)$$
$$\varepsilon = \arctan\left(\frac{b^2+c^2+h^2-2ch-1}{a\sqrt{(1+c-h)^2+b^2}}\right)$$

Cost Summary

Expense	Lab Cost	Prototype Cost	Bulk Cost
OTS Parts	\$26.09	\$119.34	\$71.60
Raw Materials	-	\$16.78	\$44.15
Manufacturing Labor	-	\$6.44	-
Assembly Labor	-	\$22.86	\$11.43
Energy Consumption	-	-	-
Total	\$26.09	\$171.42	\$127.18

Department of Mechanical & Aerospace Engineering

Why Manufacture G.E.R.A.L.D.?

THANK YOU Questions?

NORTHROP GRUMMAN

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE