UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

BiAxis Solar Simple, Modular, and Powerful

Section 30309, Group 473P

Kevin Diaz, Ethan E. Hinds, Joseph A. Miller, Brendan J. Reiss, Charles G. Stone, Darian A. Visosevic, and Devon M. Yon

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Our design focuses on **simplicity** with two motors that individually control the axes of motion. Exposed gears and motors allow for easy maintenance and problem recognition.

Key Product Specifications

- $Cost < $100/m^2$
- Parts cost \leq OTS part cost
- FOS > 2
- Works in Las Vegas Environment

- Small non-reflecting area
- Washable reflecting surface
- Operational lifetime > 20 years

3D Printed Parts used in Prototyping

Laser Targeting Testing

Main structure

UF

- 11" height, 1" aluminum square tubing with 0.125" wall thickness
- Aluminum was selected for its resistance to weatherbased corrosion
- Short height, stiffer material and cross section all contribute to stability in the wind

Drive Train Assembly

UF

- 2 axes of rotation to track azimuth and elevation
- Calculated 3.6 gear ratio for angular resolution of 0.5 degrees (1.8 degrees per step of stepper motor)
- Actual gear ratio of 5 to account for slipping

Drive Train Assembly

Max Torque Calculation: $T_{hold} = 3.17 \ kg \cdot cm$ $T_{out} = T_{hold} \times G = T_{hold} \times 5$ $T_{out} = 15.85 \ kg \cdot cm$ $T_{in} = W_{motor} \times d_{motor}$ $T_{in} = 0.365 \ kg \times 4.2 \ cm$ $T_{in} = 1.533 \ kg \cdot cm$ $T_{in} < T_{out}$

Drive Train Assembly

UF

- Sleeve bearings in pivot points to allow for smooth rotation
- Limit switches to allow for homing
- Standard size fasteners for ease of assembly
 - All ¼"-20 thread with 3 different lengths

Control Box

- Contains breadboard with motor controllers, microcontroller board, and SHTC3 temperature sensor
- Box was added late in development once required electronics and wiring was finalized
- Hole in bottom allows for passage of USB connection and 12 V power supply wires

Controls

- Motor control was done with C++ code in Arduino environment
- SparkFun Thing Plus ESP32 board and NEMA 17 stepper motors
- The NEMA motors have a step size of 1.8°, with 5:1 gear reduction allowing for a step size of 0.36°, meeting the required 0.5° angle accuracy of the product

Dynamics

- The two NEMA motors can move a maximum of 68 (South) and 161 (East-West) degrees respectively due to physical obstacles in the limit switches and supporting pillar, but full solar tracking is still possible in the given angle regions
- On startup, the motors home to 0° (straight up) for South motor and -90° (West) for East-West motor to track motor position
- The Arduino code can be given target angle or Cartesian position and rotate the motors to reflect to the desired point

Manufacturing Considerations

- External service friendly
- Standard fastener selection
- Number of fasteners limited where possible using overlapping parts such as limit switch holder
- 3D printed rapid prototyping -> commonly available aluminum tubing

Cost Summary

- Total cost of one unit: \$47.77
 - Including *: \$154.02
- Total cost of 3000 units: \$143,310
 - Including *: \$462,060

Item	Cost
Given OTS Parts*	\$106.25
3D Printed Parts	\$11.60
OTS Parts	\$6.47
Raw Materials	\$13.20
Manufacturing Costs	\$9.59
Energy Consumption	\$0.29
Assembly Labor	\$6.62
	TOTAL: \$47.77

* Not accounted for in total cost

Why Choose BiAxis Solar?

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

