

Mechanical and Aerospace Engineering

EML 4501 Mechanical Engineering Design II Spring 2022

Section: 13070 Group: 4

OPERATION CONCENTRATION

Marcus Mlack, Stephen Morton, Matthew Poole, Kristin Santaniello, Jenna Scott and Joshua Watts

OWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Outline

UF

Who is Operation Concentration?

Overview of the design and its subsystems

Analysis of the subsystems

Final remarks

Our Principals (Hedgehog Concept)

- To create a durable, modular heliostat system with two axes of rotation that is easy to manufacture and easy to install
- We're passionate about creating something new and challenging to push what is possible

Design Overview

- Mirror Subsystem
 - 4 reflective surfaces
- Controller subsystem
 - 1 motor
 - Connecting Rod
- Heliostat Base Subsystem
 - Linkage system
 - Rotates about vertical axis
- Module Base Subsystem
 - 1 motor
 - Control Panel
 - Arduino and ESP module
 - 4 legs for support
 - Concrete posts

Design Overview

Mirror Subsystem

Controller Subsystem

Heliostat Base Subsystem

Module Base Subsystem

Design Overview

Overall Product Dimensions

- Top View
- Overall Dimensions
 - 1m x 1.35m
- The center of each module is spaced
 1.7m from the nearest module

1.35 m

Mirror Subsystem

- Borosilicate Glass Mirror
 - 1 x 0.25 x 0.005 m
- 4 Mirror Clips
 - 0.071" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal
- Mirror Backing
 - 0.015" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal
- 2 V-Shaped Supports
 - 0.071" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal
- Linkage
 - 0.071" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal

UF

Customer Needs Map for Mirror Subsystem

Mirror Subsystem Analysis

Drag Force Calculations

- Assume Mirrors are in the vertical position to maximize frontal area
- $C_D = 1.98$ (For rlat rectangular plate perpendicular to the flow)

$$F_D = \frac{1}{2}\rho v^2 C_D A = \frac{1}{2} \left(1.225 \ \frac{kg}{m^3} \right) \left(44.7 \ \frac{m}{s} \right)^2 (1.98) \left(0.25 \ m^2 \right) = 605.8 \ N$$

 $F_{max} = F_D \times FOS = 605.8 N \times 2 = 1211.6 N$

Mirror Bending Stress Calculations

Assume Drag Force acts as a distributed load across the face of the mirror

$$M = \frac{F_{max}L^2}{8} = \frac{(1211.6\frac{N}{m})(1\ m)^2}{8} = 151.45\ \text{Nm}$$
$$I = \frac{1}{12}bh^3 = \frac{1}{12}(0.25\ m)(0.00318\ m)^3 = 6.7\times10^{-10}\ m^4$$
$$\sigma_f = \frac{My}{L} = \frac{151.45\ \text{Nm}\times6.7\times0.00159\ m}{6.7\times10^{-10}\ m^4} = 359.44\ MPa$$

Mirror Subsystem Analysis

Downforce Calculation

- Assume mirrors at maximum lifting angle before the flow separates
- $C_L = 2\pi\alpha$ (For Flat Rectangular Plate)

 $\alpha = 15$ degrees = 0.2618 radians (Maximum angle of attack before flow separation)

 $C_L = 2\pi (0.218) = 1.32$

$$F_{DF} = -F_L = -\frac{1}{2}\rho v^2 C_D A = -\frac{1}{2} \left(1.225 \ \frac{kg}{m^3} \right) \left(44.7 \ \frac{m}{s} \right)^2 (1.32) \left(0.25 \ m^2 \right) = -402.69 \ N$$

 $F_{max} = F_{DF} \times FOS = 402.69 N \times 2 = 805.38 N$

*Drawings not to scale

MECHANICAL AND AEROSPACE ENGINEERING

Maximum Shading

Assumptions

- 1. Maximum angular offset from horizontal is $\theta_s = 40^{\circ}$
- 2. h_s is offset from vertical by the angle 90°- θ_s
- 3. Mirror position at θ_s has tracking errors < 0.5°
- 4. A right angle is formed between the shaded regions and mirrored surfaces
- 5. Height of mirrors is 0.25m

Determining height of shaded region: hs

$$\tan(90^{\circ} - \theta_s) = \left(\frac{0.25m - h_s}{distance \ between \ mirrors}\right)$$
$$\tan(90^{\circ} - 40^{\circ}) = \left(\frac{0.25m - h_s}{0.1575m}\right)$$

 $0.1575m \times \tan(50^\circ) = 0.25m - h_s$

 $0.25m - (0.1575m \times \tan(50^\circ)) = h_s = 0.0623m$

Determining area of shaded region per mirror: As, mirror

$$A_{s.mirror} = L \times h_s$$

$$A_{s,mirror} = (1m) \times (0.0623m) = 0.0623m^2$$

Determining total shaded area: As,total

$$A_{s,total} = 3(L \times h_s)$$
$$A_{s,total} = 3(0.0623m^2) = 0.187m^2$$

*Geometry not to scale

$$\%_s = \frac{shaded\ mirror\ area}{total\ mirror\ area} \times 100 = \frac{0.4987m^2}{4(1m \times .25m)} \times 100 = \mathbf{18.7\%}$$

Controller Subsystem

Connecting Rod

- 0.071" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal
- 16.7 RPM Cytron Motor with Encoder
 - Shielding Case Polyethylene Sheet
 - 810 Counts Per Revolution
- Protective Brush
 - Silicone Weather Stripping Brush
 - Brush holder
 - 0.071" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal
- 2 Limit Switches
 - Shielding Case Polyethylene Sheet
- 2 Rod Guides
 - 0.071" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal

Controller Subsystem Close Ups

MECHANICAL AND AEROSPACE ENGINEERING

UF

Customer Needs Map for Controller Subsystem

Controller Subsystem Analysis

Motor Torque Calculations

Assume reset takes 600 seconds, starting from rest

Power Calculation

$$P_{min} = M\omega = (1.739 \times 10^{-8} Nm)(0.033 \, rad/s) = 5.265 \times 10^{-7} \, W$$

MECHANICAL AND AEROSPACE ENGINEERING

Controller Subsystem Analysis

$$q = (1.74 \times 10^{-6} J) \left(\frac{1}{0.8} - 1\right) = 4.35 \times 10^{-7} W$$

Component is not at risk of overheating

17

*Drawings not to scale

Heliostat Base Subsystem

Heliostat Base Plate

UH

- 0.071" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal
- 1.33 x 0.545 m rectangular shape with cutouts
- Edges are bent up by 15 mm for strength

UF

Customer Needs Map for Heliostat Base Subsystem

Heliostat Base Subsystem Analysis

 F_1 and F_2 are forces from the weight of heliostats. F_d is the max downforce experienced by the mirrors by the wind.

$$M_{max} = \Sigma F x = F_1 x_1 + F_2 x_2 + F_d x_d = 160400 Nmm$$

 $M_{min} = \Sigma F x = F_1 x_1 + F_2 x_2 - F_d x_d = -124200 Nmm$

Heliostat Base Subsystem Analysis

Cross sectional diagram of weakest point

Second Moment of Inertia

$$I = \frac{1}{12}b_1h_1^3 + A_1d_1^2 - (\frac{1}{12}b_2h_2^3 + A_2d_2^2 + \frac{1}{12}b_3h_3^3 + A_3d_3^2) = 99413.99 \ mm^4$$

Bending Stresses

$$\sigma = \frac{My}{I} \qquad \qquad \sigma_{max} = \frac{M_{max}y}{I} = 19.26 MPa \qquad \qquad \sigma_{min0} = \frac{M_{min}y}{I} = -14.91 MPa$$

*Drawings not to scale

MECHANICAL AND AEROSPACE ENGINEERING

Heliostat Base Subsystem Analysis

Cyclic Loading $S_{ut} = 635 MPa$

Equivalent Completely Reversed Stress (σ_{AR})

*Drawings not to scale

23

MECHANICAL AND AEROSPACE ENGINEERING

UÍ

Heliostat Base Subsystem Analysis

Module Base Subsystem

- Module Base Support
 - 0.071" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal
- Lazy Susan
 - 500lb capacity
- 16.7 RPM Cytron Motor with Encoder
- Circular Module Base
 - 0.071" thick Zinc-Galvanized Low-Carbon Steel Sheet Metal
- Control Panel
 - Arduino Uno, 12V motor driver, esp-w2 microcontroller with WiFi capabilities
- Concrete Cylinders
- Shielding Case
 - Polyethylene Sheet with slits for ventilation

MECHANICAL AND AEROSPACE ENGINEERING

Module Base Subsystem Close Ups

UF

Customer Needs Map for Module Base Subsystem

Module Base Subsystem Analysis

Leg Stress Calculations

Module Base Subsystem Analysis

Leg Stress Calculations Cont.

Normal Stress Calculations

$$\bar{y} = \frac{A_1 y_1 + A_2 y_2}{A_1 + A_2} = \frac{(1.5875 \ mm)(30 \ mm)(15 \ mm) + (30 \ mm - 1.5875 \ mm)(1.5875 \ mm)(\frac{1.5875}{2} \ mm)}{(1.5875 \ mm)(30 \ mm) + (30 \ mm - 1.5875 \ mm)(1.5875 \ mm)} = 8.0899$$

$$I = \frac{1}{12}b_1h_1^3 + A_1d_1^2 + \frac{1}{12}b_2h_2^3 + A_2d_2^2$$

= $\frac{1}{12}(1.5875 mm)(30 mm)^3 + (30 mm)(1.5875 mm)(15 mm - 8.0899 mm)^2 + \frac{1}{12}(30 mm - 1.5875 mm)(1.5875 mm)^3$
+ $(30 mm - 1.5875 mm)(1.5875 mm)\left(8.0899 mm - \frac{1.5875}{2} mm\right)^2$
= $8256.52 mm^4$

$$\sigma_n = \frac{F_g}{4A} = \frac{200 N}{(1.5875 mm)(30 mm) + (30 mm - 1.5875 mm)(1.5875 mm)} = 2.1568 \text{ Mpa}$$

Module Base Subsystem Analysis

Leg Stress Calculations Cont.

Bending Stress Calculations

$$M = \frac{F_{drag}}{4}h = \frac{605.8 N}{4}(100 mm) = 15145 Nmm$$

$$\sigma_b = \frac{My}{I} = \frac{(15145 Nmm)(0.79375 mm)}{8256.52 mm^4} = 1.456 MPa$$

Factor of Safety

$$N = \frac{S_{sy}}{\sigma_n + \sigma_b} = \frac{490 MPa}{2.1568 MPa + 1.4559 MPa} = 135.6$$

72 teeth

24 teeth

MECHANICAL AND AEROSPACE ENGINEERING

Module Base Subsystem Analysis

Motor Torque Calculations

- Assume reset takes 600 seconds at the end of each day
- Assume the motor starts from rest

$$\frac{N_i}{N_o} = \frac{24 \text{ teeth}}{72 \text{ teeth}} = \frac{1}{3}$$

$$\omega_o = \frac{\Delta\theta}{t} = \frac{2\pi \text{ rad}}{600 \text{ s}} = 0.01047 \text{ rad/s}$$

$$\alpha_o = \frac{\Delta\omega_o}{t/2} = \frac{0.01047 \text{ rad/s}}{300 \text{ s}} = 3.49 \times 10^{-4} \text{ rad/s}^2$$

$$\omega_i = 3\omega_o = 3(0.01047 \text{ rad/s}) = 0.03142 \text{ rad/s}$$

$$\alpha_i = \frac{\Delta\omega_i}{t/2} = \frac{0.03142 \text{ rad/s}}{300 \text{ s}} = 1.05 \times 10^{-4} \text{ rad/s}^2$$

$$M = I\alpha_i = 4.02 \text{ kg} * m^2(1.05 \times 10^{-4} \text{ rad/s}^2) = 4.2 \times 10^{-4} \text{ Nm}$$
Moment of Inertia / Calculated through SolidWorks

Power Calculation

$$P_{min} = M\omega_i = 4.2 \times 10^{-2} Nm(0.03142 rad/s) = 1.32 \times 10^{-2} W$$

Cost Summary – Entire Heliostat Field

Category	Cost	Color
Manufacturing	\$186.53	
Assembly	\$35.72	
Raw Material	\$130.87	
OTS	\$151.68	
Modified OTS	\$0.00	
Energy	\$0.02	
Total	\$504.82	

Lifetime Summary

Although our cost is high, our design's lifespan is predicted to be well over 20 years

Brushless DC Motors have estimated lifespans of 10,000 hours

Our motors will have lifespans of approximately 68.5 years

Borosilicate Glass is highly resistant to thermal stresses

It has an extremely low coefficient of thermal expansion

Most of our design is made from sheet metal parts

These parts are designed for infinite life, as shown in our analyses

Design Highlights and Key Features

Conclusion

Operation Concentration has designed a product that is

- Easy to manufacture due to the simple materials and techniques
- Quickly installed on the site of the solar farm
- Lower cost than heliostats on the market today
- Modular design to allow for faster maintenance

ГМ

Thank you to the UF Department of Mechanical and Aerospace Engineering as well as our corporate sponsors!

Questions?

