UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Sun Chariot

Innovative Heliostat Module Design

EML4501 Spring 2022 Section 29054

Group 9: Daniel Colbert, Daniel Corrada, Jessica Blazek, Matthew Giles, Roberto Profeta, Roni Alima, Utah Johnson

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Presentation Outline

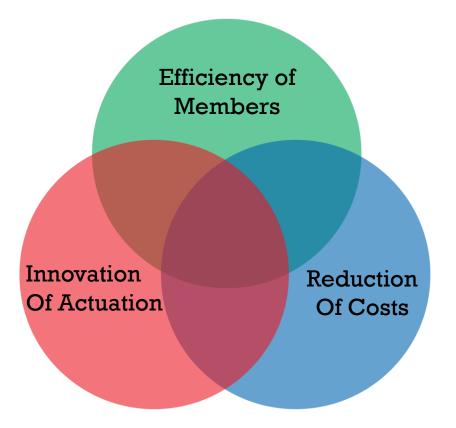
0

Hedgehog Concept

Product Overview

Subsystem Identification and Key Features

Engineering Analyses in Each Subsystem


Cost Breakdown

Conclusion

Hedgehog Concept

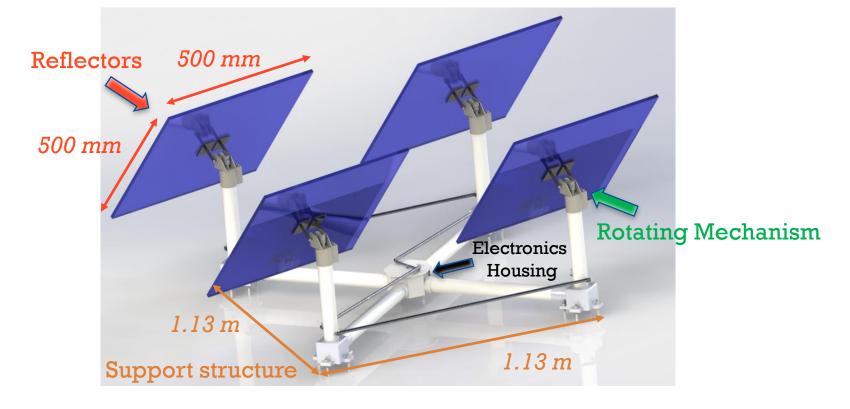
 Sun Chariot is a heliostat design marked by its novel actuation which maximizes mechanical efficiency.

Identification of Subsystems

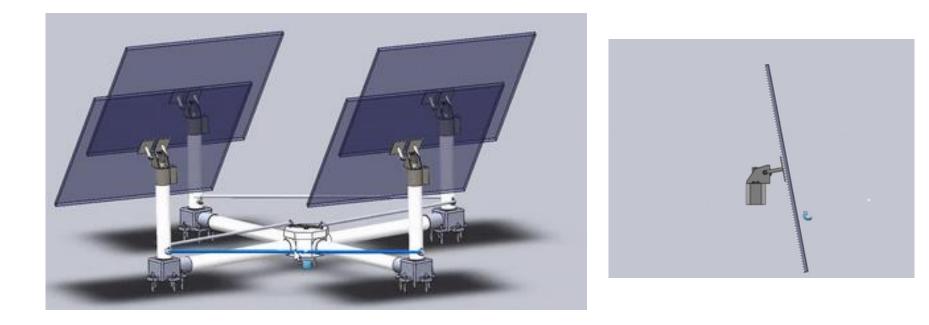
Reflector

Rotating Mechanism

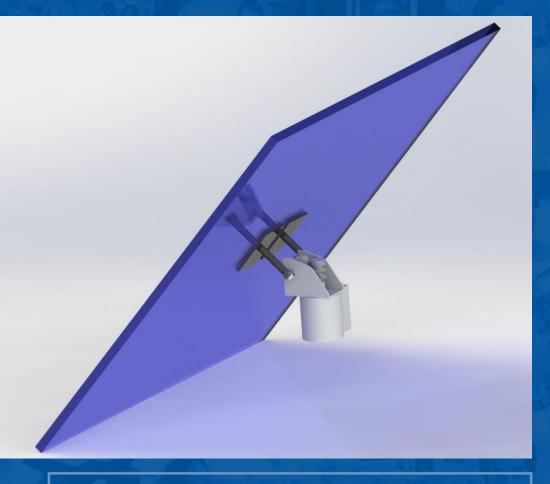
Support Structure


Electronics

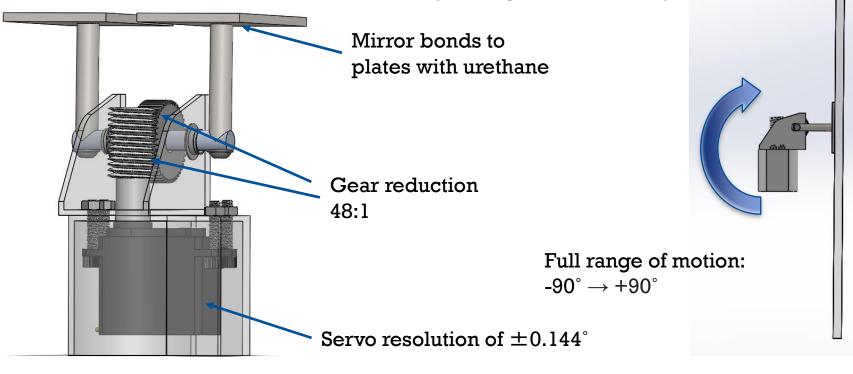
Herbert Wertheim College of Engineering


Department of Mechanical & Aerospace Engineering

Product Overview

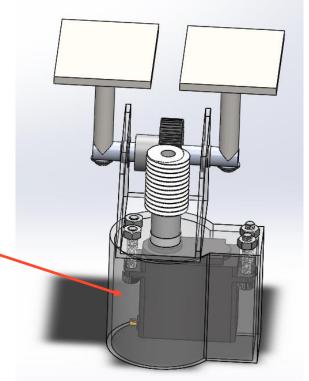


Two-Axis Rotation


Reflector

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Degrees of Rotation (Major Axis)

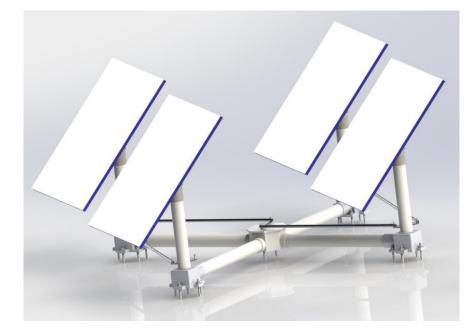

UF 📑

Department of Mechanical & Aerospace Engineering

Degrees of Rotation (Major Axis)

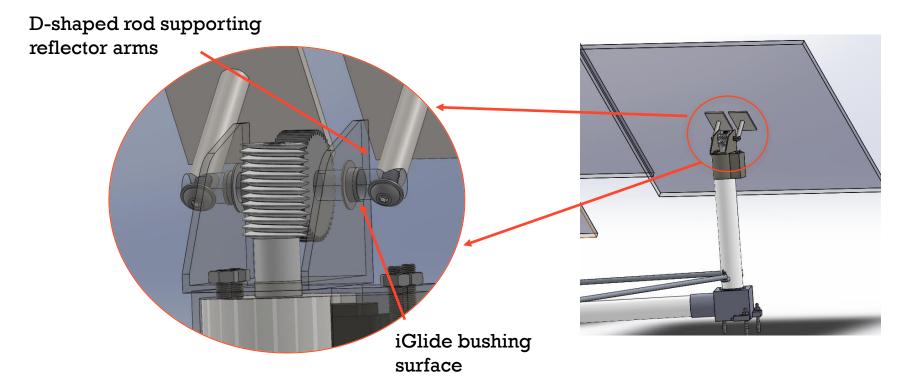
Major axis motor: MS-R-6-40 Analog Servo

5 kg·cm max torque 4.8 Volts 360° rotation motor



Torque after gear reduction: 7.01 N·m

Reflector Sub-Assembly


- Four Independently Moving Square Reflectors
 - 500 mm × 500 mm
- Silver-Coated Glass
- Fastened via Urethane Adhesive

UF

Department of Mechanical & Aerospace Engineering

Simple Pivot Mechanism

Solar Concentration Ratio

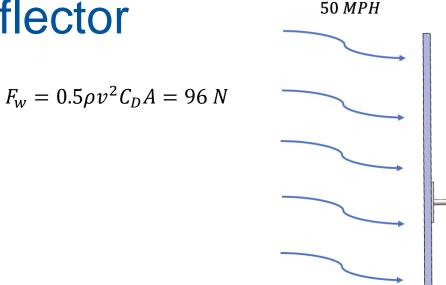
$$\frac{N_{reflectors} * A_{reflector}}{A_{reciever}} = SCR \qquad \qquad \frac{4250 * (0.25m^2)}{1 m^2} = 1063 suns$$

Thermal Input Power

 $\eta_{heliostat} * A_{heliostat} * N_{heliostats} * \dot{Q}_{sun} = P_{thermal input}$

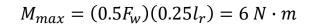
0.98 * 0.25 * 4250 * 1000 = 1.04 MW

Herbert Wertheim College of Engineering

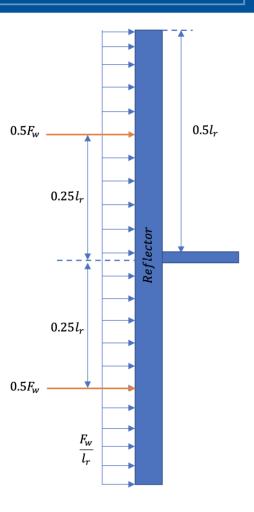

Department of Mechanical & Aerospace Engineering

Thermal Fatigue

 $\dot{O} = h(T_{max} - T_e)$ Glass: **Reflective Silver Mirror:** $T_{max} = T_e + \frac{\dot{Q}}{h} = 49^{o}C + \frac{1000\frac{W}{m^2}}{10\frac{W}{m^2 \circ C}} = 149^{o}C$ $T_{max} = T_e + \frac{\dot{Q}}{h} = 49^{\circ}C + \frac{1000\frac{W}{m^2}}{24\frac{W}{m^2 0.00}} = 90.6^{\circ}C$ $T_{min} = -6.67^{\circ}C$ (Coldest temperature in placement location) $\Delta T = 149^{\circ}C - (-6.67^{\circ}C) = 155.7^{\circ}C$ $\Delta T = 107^{o}C - (-6.67^{o}C) = 97.3^{o}C$ Otiaba, K. C., Bhatti, R. S., Ekere, N. N., Mallik, S., and Ekpu, M., "Finite element analysis of Hasselman, D. P. H., Badaliance, R., McKinney, K. R., & Kim, C. H. (n.d.). Failure the effect of silver content for Sn-Aq-cu alloy compositions on thermal cycling reliability of prediction of the thermal fatigue resistance of a glass - Journal of Materials Science. solder die attach," Engineering Failure Analysis Available: SpringerLink. Retrieved April 13, 2022, from https://www.sciencedirect.com/science/article/pii/S1350630712002166. https://link.springer.com/article/10.1007/BF00540926


Drag Force on Reflector

- $C_D = \text{Drag coefficient} = 1.28$
- A =Frontal area = 0.25 m^2
- $\rho = \text{Density} = 1.202 \frac{kg}{m^3}$
- $v = \text{Wind speed} = 50 \text{ MPH} (22.4 \frac{m}{s})$
- F_w = Drag force on reflector

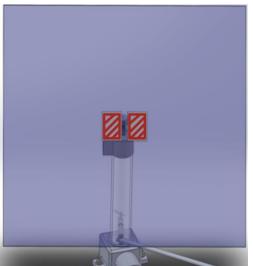

Reflector Bending Stress

- F_w = Reflector drag force = 96 N
- $l_r = \text{Reflector length} = 0.5 m$
- w_r = Reflector width = 0.5 m
- t_r = Reflector thickness = 0.005 m
- σ_r = Bending stress
- n = Factor of safety

$$I = \frac{w_r t_r^3}{12} = 5.21 \times 10^{-9} m^4$$

$$y = \frac{t_r}{2} = 0.0025 m$$
$$\sigma_r = \frac{M_{max}y}{I} = 2.88 MPa$$
$$n = \frac{S_u}{\sigma_r} = 24.31$$

PP2401 Autourethane Strength


- F_w = maximum wind force = 96 N
- w = width of application = 40 mm
- l = length of application = 60 mm
- σ_y = strength of Urethane = 10.14 MPa
- A_c = contact area
- σ = maximum stress
- n = factor of safety

$$A_c = 2(w * l) = 4800 \ mm^2$$

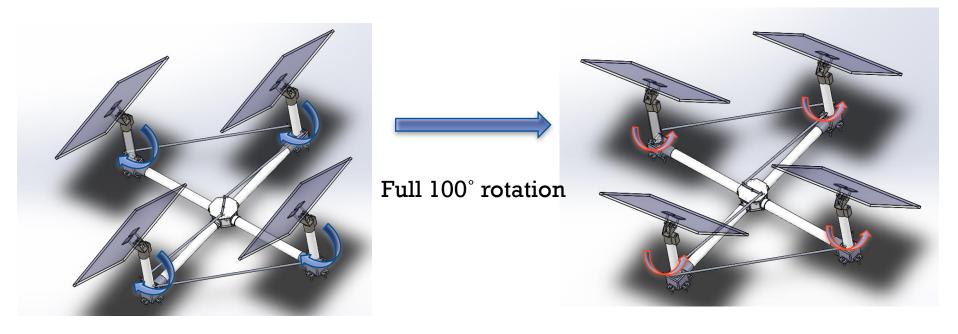
$$\sigma = \frac{F_w}{A_c} = 0.02 \ MPa$$

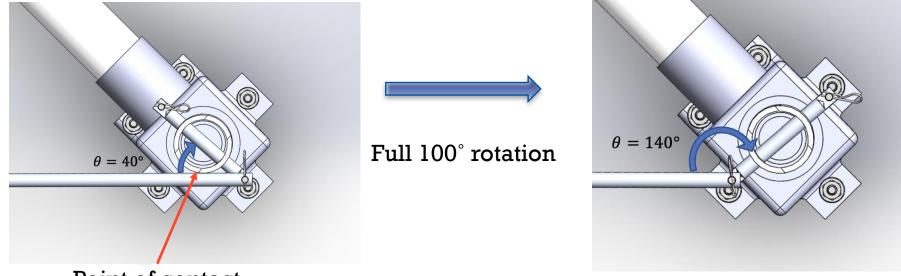
$$n = \frac{\sigma_y}{\sigma} = 507$$

 ** High factor of safety due to large application area of Urethane (negligible effect on cost)

Customer Needs: Reflector Subsystem

Customer Need	Design Specifications	
Total reflective area $\leq 1 \text{ m}^2$	Total reflective area: 1 m ²	\checkmark
Cleaning time ≤ 15 minutes	Total cleaning time: 10 min	\checkmark
Focal thermal input power of at least 1 MW	Focal thermal input power: 1.04 MW	
Solar concentration ratio > 1000 suns	Solar concentration ratio: 1063 suns	V
Reflection distance $\geq 100 \text{ m}$	Reflective distance 100 m	

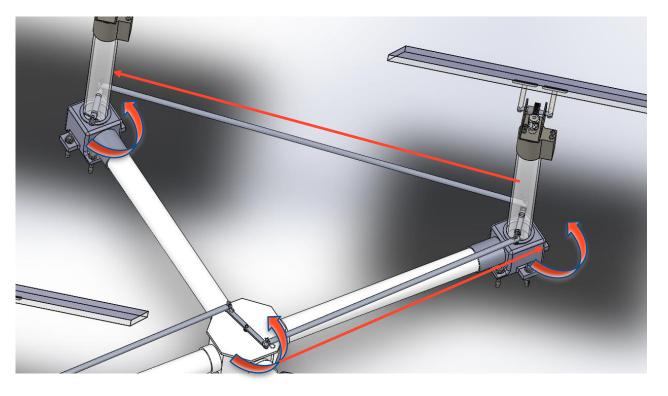

Rotating Mechanism


POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Minor Axis Rotation

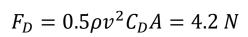
Minor Axis Rotation

Point of contact

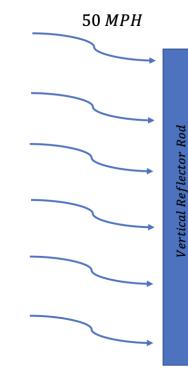

UF

Department of Mechanical & Aerospace Engineering

Rotating Mechanism


Central Motor: CYSS0090 Analog Servo Motor

10 kg ·cm Max Torque 4.8 Volts



Drag Force on Vertical Reflector Rod

- C_D = Drag coefficient = 1.1
- $d_r = \text{Rod diameter} = 0.042 m$
- $h_r = \text{Rod height} = 0.325 m$
- $v = \text{Wind speed} = 50 \text{ MPH} \left(22.4 \frac{m}{s}\right)$
- $\rho = \text{Air density} = 1.202 \frac{kg}{m^3}$
- F_D = Drag force on rod
- A =Frontal area $= 0.25 m^2$

 $A = d_r h_r$

Vertical Rotating Rod Stress

- h_r = Height of rod = 0.325 m
- d_r = Outer diameter of rod = 0.042 m
- r_o = Outer radius of rod = 0.021 m
- ρ = Density of air = $1.202 \frac{kg}{m^3}$
- C_{Dr} = Reflector drag coefficient = 1.28
- C_{Dv} = Vertical rod drag coefficient = 1.1
- I = Moment of inertia = 7.9 \times 10⁻⁸ m^4
- v = Velocity of air
- F_w = Drag force on reflector
- F_D = Drag force on rod
- M_r = Reaction moment

$$F_w = 0.5\rho C_{Dr} v^2 A_{ref} = 96 N$$

$$F_D = 0.5 \rho C_{Dv} v^2 h_r d_r = 4.2 N$$

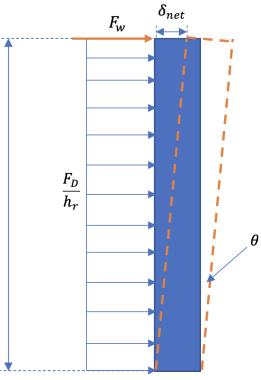
$$M_R = h_r (F_w + 0.5F_D) = 31.88 \text{ N} * \text{m}$$

$$\sigma_{bending} = \frac{M_R r_o}{I} = 8.48 MPa$$

$$n = \frac{55 MPa}{8.48 MPa} = 6.49$$

$$F_w$$

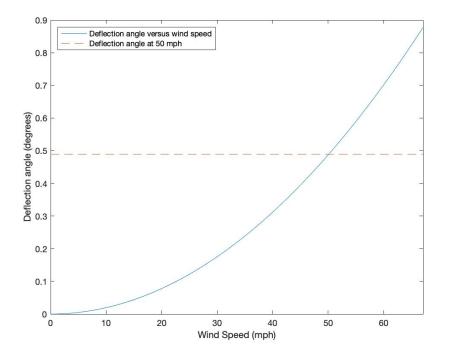
 h_r F_D
 $0.5h_r$
 M_R


Vertical Rotating Rod Deflection

- *E* = Modulus of elasticity of PVC = 4.425 *GPa*
- δ_w = Deflection due to reflector
- δ_D = Deflection due to distributed load
- θ = Angle of deflection

$$\delta_D = \frac{\left(\frac{F_D}{h_r}\right)h_r^4}{8EI} = \frac{F_D h_r^3}{8EI}$$

$$\delta_{net} = \delta_w + \delta_D = \frac{h_r^3}{EI} \left(\frac{F_w}{3} + \frac{F_D}{8} \right) = 3.2 \ mm \qquad h_r$$
$$\theta = \tan^{-1} \frac{\delta_{net}}{h_r} = 0.49^\circ$$



Vertical Rotating Rod Deflection (Cont.)

 $\theta_{max} = 0.29^{\circ}$

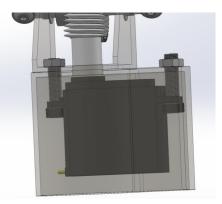
Rod Deflection at Various Speeds				
Wind Speed (mph)	$\delta_{net} (mm)$	θ (degrees)		
10	0.13	0.02		
20	0.51	0.08		
30	1.15	0.18		
38	1.87	0.29		
50	3.20	0.49		

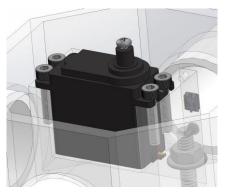
Resolution of Motor

Reflector Servo

- PW_{range} = pulse width range = $2500\mu s$
- $\theta_{tot} = \text{total rotation} = 360^{\circ}$
- $W_{db} = \text{dead band width} = \pm 1 \mu s$
- *R* = resolution

$$\frac{PW_{range}}{\theta_{tot}} = 6.944 \mu s * degree^{-1}$$


$$R = \frac{W_{db}}{6.944 \mu s * degree^{-1}} = \pm 0.144^{\circ}$$

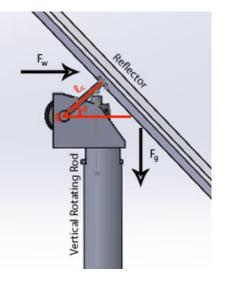

Central Servo

- $PW_{range} =$ pulse width range $= 2200 \mu s$
- $\theta_{tot} = \text{total rotation} = 90^{\circ}$
- $W_{db} = \text{dead band width} = \pm 2\mu s$
- *R* = resolution

$$\frac{PW_{range}}{\theta_{tot}} = 24.444 \mu s * degree^{-1}$$

$$R = \frac{W_{db}}{24.444\mu s * degree^{-1}} = \pm 0.082^{\circ}$$

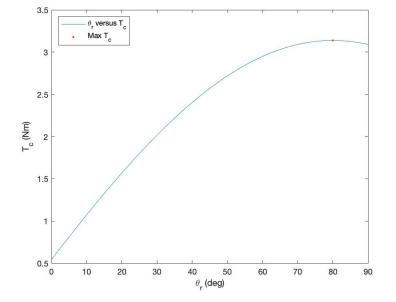
Reflector Servo Torque


- $F_w = maximum wind force = 96 N$ • $T_{stall} = stall torque = 0.2157 N \cdot m$
- $l_c = length \ of \ reflector \ support \ arm = 0.0412 \ m$ $T_o = output \ torque$
- $m_r = mass \ of \ reflector = 1.35 \ kg$
- $\eta_w = worm \ gear \ efficiency = 0.64$

- $\theta_r = angle \ of \ rotation$
- $T_c = torque applied to pinion rod$

• $G = gear \ ratio = 48$

Reflector Servo Torque

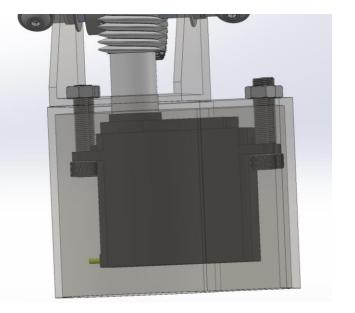


$$F_g = m_r g = 13.42 N$$

$$T_c = F_w l_c \sin\theta_r + F_g l_c \cos\theta_r$$

Peak at $\theta_r = 79.9^{\circ}$

$$T_c = 4.0 N \cdot m$$


Reflector Servo Torque

$$m_w = \frac{T_o}{T_{stall}}$$

$$m_w = \eta_w G$$

$$T_o = T_{stall} \eta_w G = 6.6 N \cdot m$$

 $T_o > T_c$

Customer Needs: Rotating Mechanism

Customer Need	Design Specifications	
Reflect light toward 100 m tall receiver	Reflector can redirect light to >100 m height	\checkmark
Total module cost \leq \$100/m ²	Total module cost \$301.06	X
Automatic rotation of 180° laterally and 90° longitudinally	180° rotation in major axis 90° rotation in minor axis	\checkmark
At least 10% cheaper than OTS	OTS parts used wherever possible	\checkmark
Each heliostat individually rotates 180°	Individual rotation of > 180°	\checkmark
Lifetime \geq 20 years	Lifetime of 20+ years	\checkmark

Support Structure

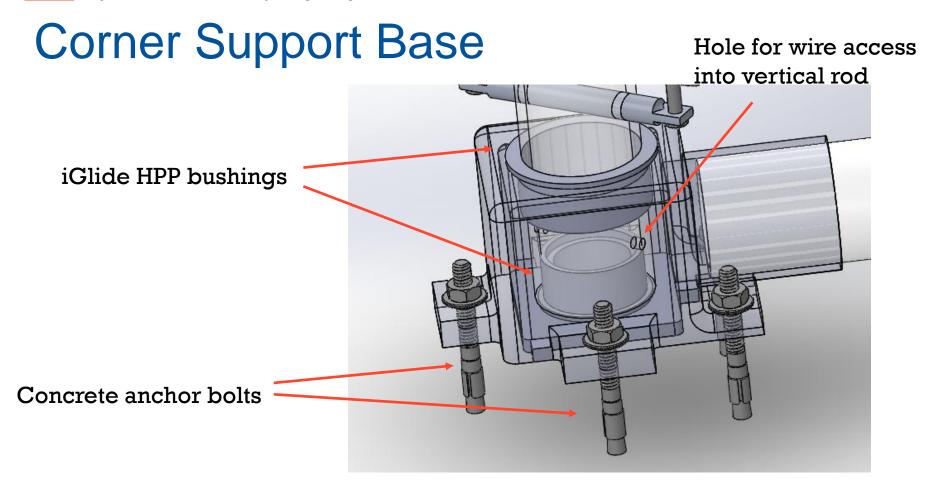
POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Herbert Wertheim College of Engineering

UF

Department of Mechanical & Aerospace Engineering

Support Structure

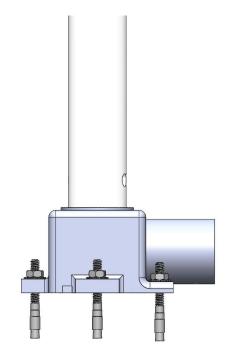

Four corner mounts

PVC Pipes

Central motor and Electronics housing Herbert Wertheim College of Engineering

UF

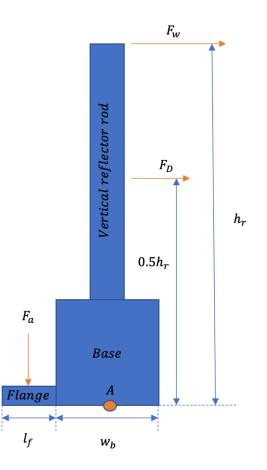
Department of Mechanical & Aerospace Engineering



Base Flange Stress

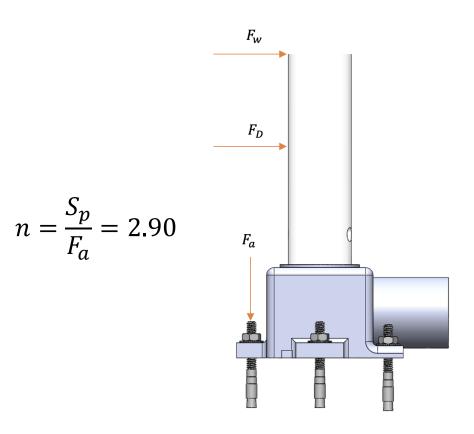
- F_w = Drag force on reflector = 96 N
- F_D = Drag force on rod = 4.2 N
- h_r = Height of rod = 0.325 m
- $w_b = Width of base = 0.07071 m$
- l_f = Length of flange = 0.01588 m

- w_f = Width of flange = 0.0317 m
- t_f = Thickness of flange = 0.01 m
- M_A = Moment about point A (see fig.)
- σ_f = Flange bending stress
- σ_y = PETG Yield stress

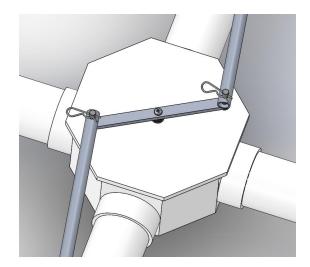

Base Flanges Stress Cont.

$$\sum M_A = F_a (0.5w_b + 0.5l_f) - F_w h_r - F_D (0.5h_r) = 0$$

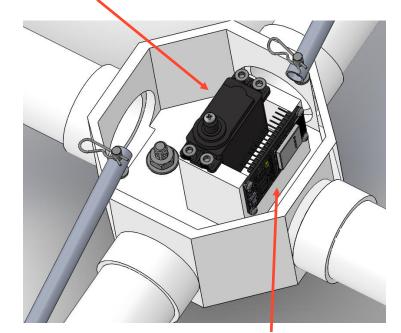
$$F_a = \frac{h_r(F_w + 0.5F_D)}{0.5(w_b + l_f)} = 736.4 N$$


$$M = 0.5F_a l_f = 5.85 N * m$$

$$\sigma_f = \frac{My}{I} = \frac{My}{\frac{w_f t_f^3}{12}} = 11.7 \text{ MPa}$$
$$n = \frac{\sigma_y}{\sigma_f} = 4.27$$


Anchor Strength

- From flange analysis, F_a = 736.4 N
- Pull-out strength of S_p = 2135.15 N
- Safety Factor of 2.90, assuming load on one anchor



Middle Junction

Central Servo Motor

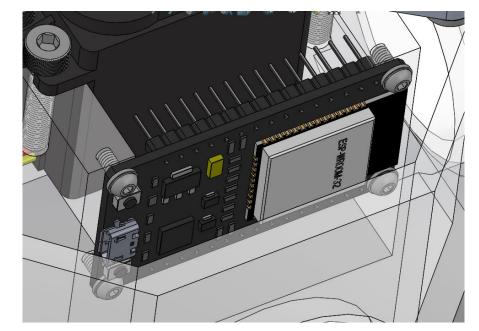
Microcontroller

Customer Needs: Support Structure

Customer Need	Design Specifications	
Heliostat area $\leq 0.25 \text{ m}^2$	Single heliostat area 0.25 m ²	\checkmark
Heliostats per module = 4 to 16	4 heliostats per module	\checkmark
Shading acceptable 60 min after dawn and 60 min before dusk	Designed to minimize shading within constraints	
Total module area $\leq 2 \text{ m}^2$	Total module area 1.35 m ²	✓
Factor of safety $N \ge 2$	All factors of safety >> 2	\checkmark
Withstand weather conditions to at least 25% waterproofing	All materials water resistant and passed thermal analyses	\checkmark

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Controls & Electronics



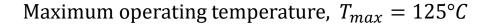
POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

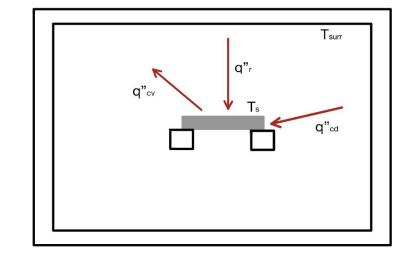
Controls and Electronics

- ESP8266 Wi-Fi enabled microcontroller
- 5.5 Volt power supply
- Safe Operating Temp. Range: -40 °C to 125 °C

Microcontroller Thermal Analysis

- $k = \text{thermal conductivity constant} = 0.2 \frac{W}{mK}$
- $h = \text{convective coefficient of air} = 10 \frac{W}{m^{2}K}$
- $\sigma = \text{Stefan Boltzmann constant} = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$
- ϵ = emissivity = 0.84
- $\Delta x = \text{total length in contact with surface} = 48 \, mm$

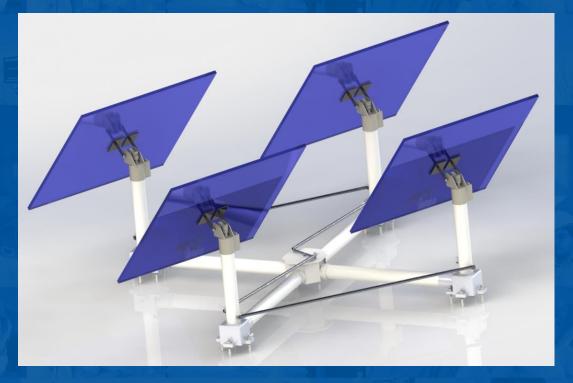

- T_{surr} = ambient air temperature = 338.08 K
- $q_{cd}^{\prime\prime}$ = conductive heat flux
- $q_{cv}^{\prime\prime}$ = convective heat flux
- q_r'' = radiative heat flux
- T_s = surface temperature



Microcontroller Thermal Analysis

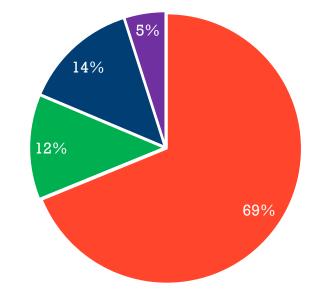
$$q_{cd}^{\prime\prime} + q_{cv}^{\prime\prime} + q_{r}^{\prime\prime} = 0$$
$$q_{cd}^{\prime\prime} = k \frac{\Delta T}{\Delta x}$$

 $q_{cv}'' = h(T_s - T_{surr})$ $q_r'' = \epsilon \sigma (T_s^4 - T_{surr}^4)$ $\therefore T_s = 357.251 \ K = 84.25 \ ^\circ C$



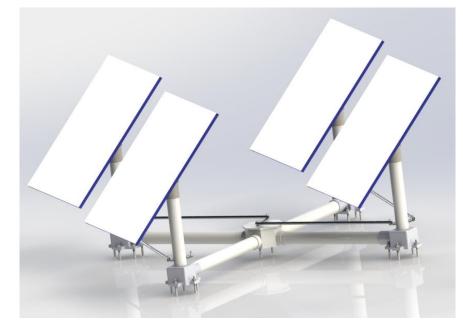
Customer Needs: Controls & Electronics

Customer Need	Design Specifications	
Critical tracking error $\leq \pm 0.25^{\circ}$	Servo motor resolution of $\pm 0.144^{\circ}$	\checkmark
Active for 8.8 hours daily	Wifi enabled microcontroller can track at all hours of the day	\checkmark


Full Assembly

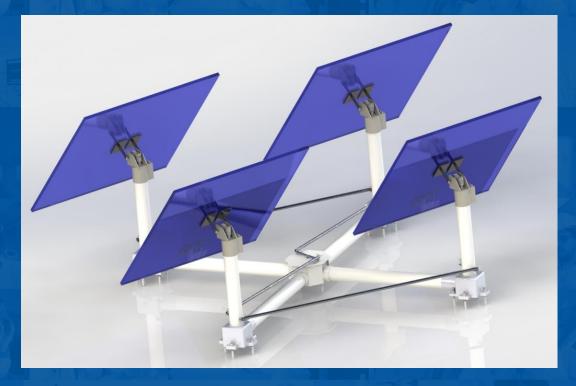
POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Cost Breakdown


Category	Cost
Materials	\$205.83
3D Printing Components	\$37.47
Manufactured Parts	\$41.08
Installation	\$14.70
Total	\$301.06

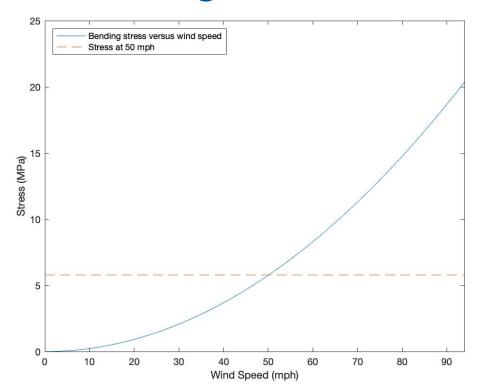
Prototyping Defense

- Modularity
- Low Number of Actuators
- Small Footprint Ratio
- Easily Sourced Materials
- Multipurpose Usage of Members



Thank you for attending our presentation!

Appendix



POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

UF Herbert Wertheim College of Engineering

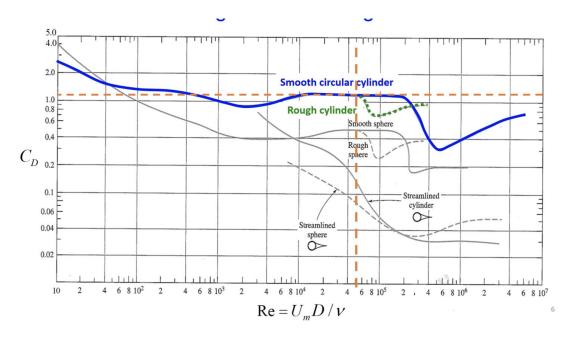
Department of Mechanical & Aerospace Engineering

Reflector Bending Stress Plot

Vertical Reflector Rod Wind Force

- $\rho = \text{density of air} = 1.202 \ kg/m^3$
- $\mu = \text{dynamic viscosity of air} = 1.825 \times 10^{-5} kg/m \cdot s$
- h_r = height of rod = 0.325 m
- d_r = diameter of rod = 0.042 m
- $v = velocity = 50 MPH = 22.4 \frac{m}{s}$

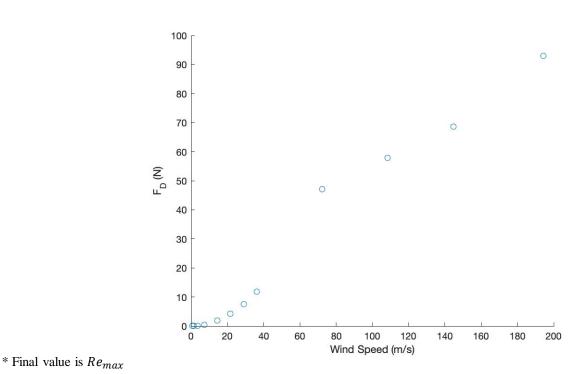
- A = frontal area
- C_d = coefficient of drag
- $F_D = \text{drag force}$
- *Re* = Reynold's number

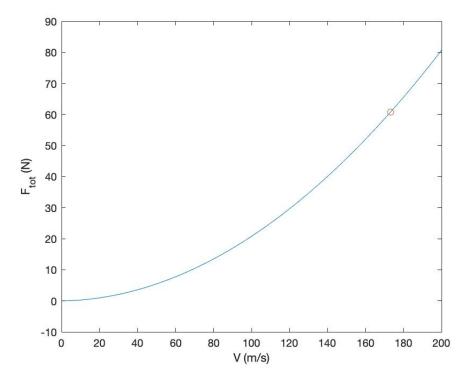


Vertical Reflector Rod Drag Force

 $A = h_r d_r = 0.01365 \ m^2$

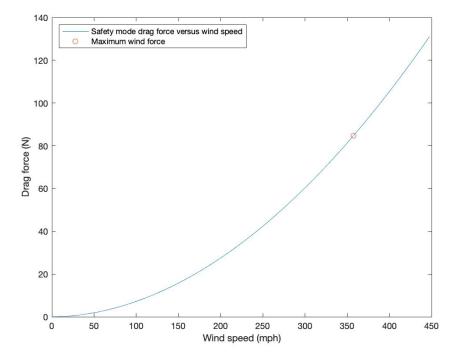
$$Re = \frac{\rho v d_r}{\mu} = 61687.25$$


 $F_D = 0.5 \rho C_D v^2 A = 4.2 N$



Vertical Reflector Rod Wind Force

Selected Re and C_D pairs		
Re	C _D	
2×10^{3}	0.8	
4×10^{3}	0.9	
104	1.1	
$2 imes 10^4$	1.1	
$4 imes 10^4$	1.1	
$6 imes 10^4$	1.1	
$8 imes 10^4$	1.1	
10 ⁵	1.1	
2×10^{5}	1.1	
3 × 10 ⁵	0.6	
4×10^{5}	0.4	
$5.3748 \times 10^5 *$	0.3	


Vertical Reflector Rod Wind Force

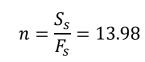
UF

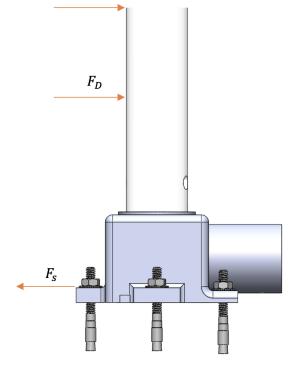
Department of Mechanical & Aerospace Engineering

Safety Mode Wind Speed

 F_{w}

Department of Mechanical & Aerospace Engineering


Anchor Strength (Cont.)


 Anchor shear strength of S_s = 1401.19 N

 $\Sigma F = 0 \rightarrow F_s = F_w + F_D$

$$F_s = 96 N + 4.2 N = 100.2 N$$

 Safety Factor of 13.98, assuming load on one anchor

