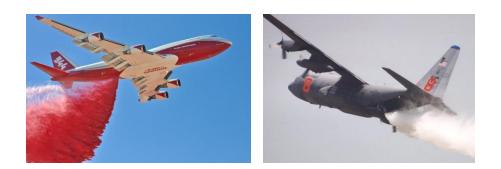


Department of Mechanical and Aerospace Engineering

Responsive Aerial Fire Fighting Aircraft

April 22, 2022

Group 2: Firefly


<u>Team Members</u>: Michaela Baughn, Shameer Boursiquot, Dylan Carter, Salvatore Como, Julian Davis, Patrick Hess, Hiroyuki Matsumura, Annabeth Smith

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Designing Fire Fighting Plane

- The majority of the aircraft currently in service for firefighting purposes are modified commercial or military airframes.
- Internal or external equipment is integrated onto the airframes, but compromises and inefficiencies are created.

Objectives

 Designing robust structural designs with easily repairable/replaceable structures at a potential weight savings.

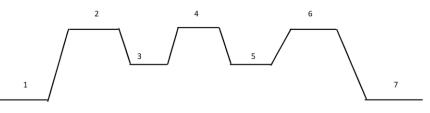
Requirements

Fire Retardant Capacity

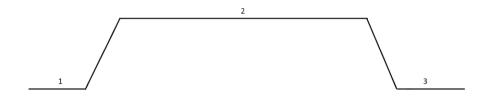
- 4,000 gal
- Multi-drop capable; minimum 2,000 gal per drop
- Drop speed <=150 kts
- Drop altitude <= 300 ft AGL

Design

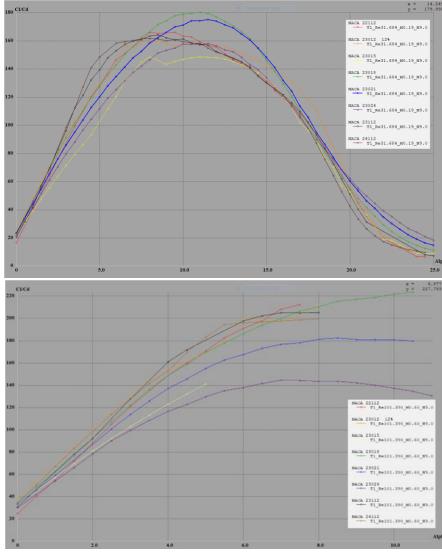
- Range 2,000 n mi (No Payload)
- Dash speed 300 kts



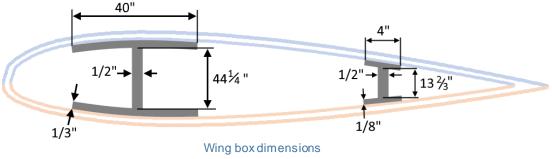
Mission Segments



1. Takeoff – 2. Cruise – 3. (1)Drop (Alt 300ft) – 4. Cruise – 5. (2)Drip – 6. Back to airport –7. Landing


Mission profile for payload drop

- Mission 2: Ferry flight
- 1. Takeoff 2. Cruise 3. Landing


Airfoil

• NACA 23018

- Highest aerodynamic efficiency at angle of attack of 10.5 degrees
 - Dash speed
- Smaller drag coefficient at higher Reynold's numbers
- Thickness
 - Moderate for maneuverability
 - Tolerate high load factor
 - Enter climb at drop speed
 - Lighter wing-box spars
- Largest L/D ratio

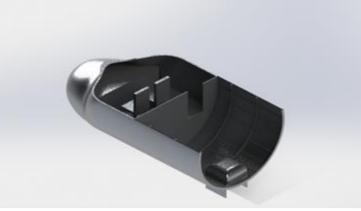
Wing Structure

- Wing box
 - Spars: fuselage to tip
 - Discrete bars with I-beam profiles
 - Main spar at aerodynamic center
 - Rear spar is attachment point for flaps
 - Ribs
- Wing tips (Hoerner-style wing tip)

Isometric view of wings

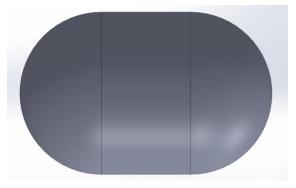

- Material
 - Leading edges: cladded aluminum
 - Skin: aluminum
 - Polyurethane top coat and primer
 - Frame: 2017 T4

Fuselage

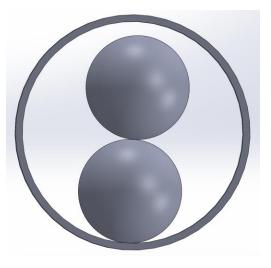

- Structure
 - Semi-monocoque
- Material
 - Aluminum Alloy: 2017 T4
 - Skin: aluminum
 - Polyure thane top coat and primer
 - Epoxy coating (for area exposed to fire retardant
- Design
 - Fineness ratio: 7.4
 - Radome Design
 - Cockpit similar to A350

Mid and Tail section of the fuselage

Section view of the fuselage

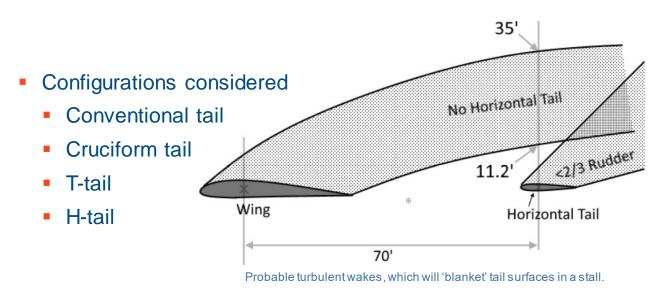


Section view of the fuselage(front)


DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Fire Retardant Tanks

- Two tanks, each with 3,002-gallon capacity
- Each tank has a 7.5 ft diameter, length of 139 inches
- Compressed air
- Sloshing
 - Top then bottom tank emptied
- Placed at center of gravity
- Retardant refill
 - Manual
 - Using pumps




Side view of the one fire retardant tank

Cross section of the fuselage with the two fire retardant tanks stacked

Tail Design

Isometric view of the tail assembly, including the control surfaces

- Why Conventional?
 - Weight
 - Rudder Control: Vertical tail blanketing
 - Elevator Control: Horizontal tail blanketing
 - Possible H-tail reevaluation

Rearview of the tail and fuselage assembly

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Herbert Wertheim College of Engineering

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Flight Controls

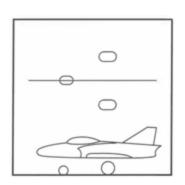
- Aileron
 - NACA 23018
 - Taper Ratio: 0.45
 - Mean chord: 3.77 ft
 - 50%-90% span of wing
- Elevator
 - NACA 0008
 - Mean chord: 4.22 ft
 - 10%-90% span of horizontal stabilizer
- Flaps
 - 0%-40% depth
 - ~50 ft
- Rudder
 - NACA 00018
 - Mean chord: 3.97 ft
 - 0%-90% span of vertical stabilizer

Initial design of wing with flap

Fuel System

- One tank in each wing
- Within the wing box
- 8,163-gallon total fuel capacity per tank(2)
- JPA1 Jet Fuel (most readily available)
- Maintain flight time of 7.5 hours
- 14,600 lb/hr of fuel burn

Truck carrying Jet A-1 Jet Fuel at airport


DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Landing Gear

- Type VII 34 x 11 tires for main tires
 - 8 tires
 - 122.87 in² contact area
 - 13.95 in rolling radius
 - Load:19,400 lbs per tire
- Type VII 30x8.8 tires for the nose
 - 2 tires
 - 83.09 in² contact area
 - 12.95 in rolling radius
 - Load: 14,000 lbs per tire

Side view of the aircraft assembly

Tricycle landing gear configuration

Oleo strut

		C	CONSTRUCTIO	N	SERVICE RATING						
SIZE		PLY Rating	TT OR TL	RATED SPEED (MPH)	RATED LOAD (LBS)	RATED INFLATION (PSI)	MAXIMUM Braking Load (LBS)	MAXIMUM Bottoming Load (LBS)	TREAD Design/ Trademark	PART NO	WEIGHT (LBS)
30x8.8		16	π	225	14,200	200	21300	42600	Flight Leader	309F62G1	53.1
34x11		22	TL	225	20,500	185	30750	61500	Flight Leader	341F22-2	81.4

Specifications of tires from GoodYear

Goodyear (https://www.aps-aviation.com/wp-content/uploads/goodyear-aircarft-tire-data.pdf)

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Powerplant and Propeller Design

- Europrop TP400-D6
- 4 total
- 14,850 Shaft Hp each
- Dash speed 400 kts
- Range 3086 nm (4,800 nm from operating base)
- Power to weight ratio:4.41 kW/kg
- Dry Weight: 1,900 kg (4,189 lb)
- TSFC: 0.175-0.561
- Can take Jet A, Jet A1, Jet B, JP4, JP5, JP8
- # of blades: 8
- Length of blade: 15.64 ft

Picture of the three-shaft turboprop Europrop TP400 engine

8-bladed propeller configuration

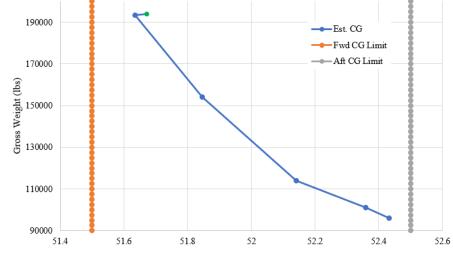
POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Herbert Wertheim College of Engineering

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Economics\$905\$568Crew (three)\$1.5M\$1.5M\$445Powerplant\$445Comparison\$6.2BTotal

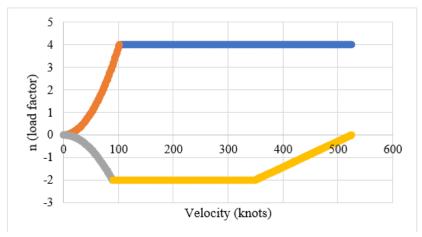
Break Even Price: \$123.5M

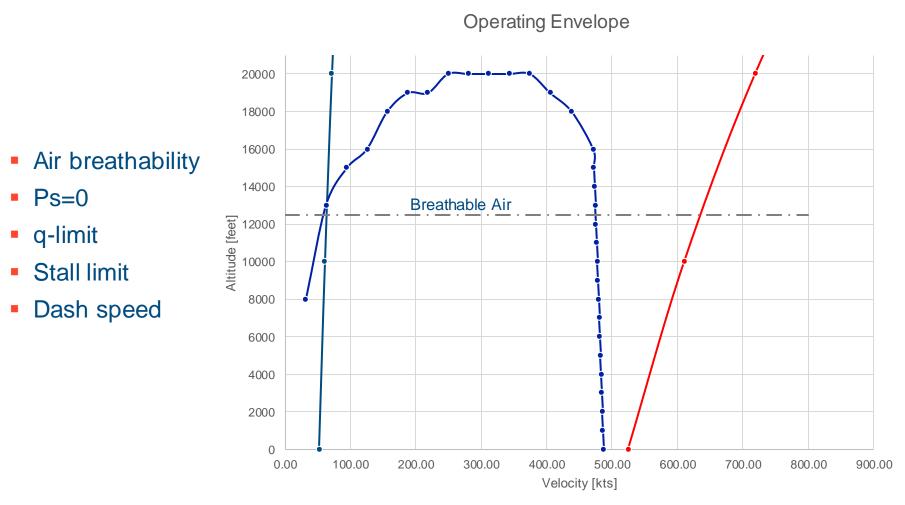

(for a 50 aircraft production run)

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Weight Estimation

- Total Takeoff Weight: 193,719 lbs
- After drop 1: 154,047 lbs
- After drop 2: 114,101 lbs
- Total Empty Weight: 90,578 lbs


Center-of-gravity envelope diagram


Final Design

- Length: 136.84 ft
- Height: 38 ft
- Wingspan: 200 ft
- Gross Weight: 192,712 lbs
- Engines: 4 Europrop T400
- Crew: 3
- Balanced Field Length: 5,000-8,000 ft
- Ferry Range: 3,096 Nautical Miles

V-n diagram using calculated based on the values

Operating Envelope

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

FIREFLY

THANK YOU